Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Java Data Analysis

You're reading from   Java Data Analysis Data mining, big data analysis, NoSQL, and data visualization

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787285651
Length 412 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
John R. Hubbard John R. Hubbard
Author Profile Icon John R. Hubbard
John R. Hubbard
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Data Analysis FREE CHAPTER 2. Data Preprocessing 3. Data Visualization 4. Statistics 5. Relational Databases 6. Regression Analysis 7. Classification Analysis 8. Cluster Analysis 9. Recommender Systems 10. NoSQL Databases 11. Big Data Analysis with Java A. Java Tools Index

Cosine similarity


If we think of each column y of the utility matrix as an n-dimensional vector, y = (y1, y2, ..., yn), then we can use the Euclidean dot product (inner product) formula to compute the cosine of the angle θ that the two vectors make at the origin:

This is called the cosine similarity measure:

For example, if y = (2, 1, 3) and z = (1, 3, 2), then:

We can see that the cosine similarity measure has the six requisite properties for a similarity measure. If u and v are parallel, then s(y, z) = cos θ = cos 0 = 1. That would be the result in the case where y = (2, 1, 2) and z = (4, 2, 4). On the other hand, if y = (2, 0, 2) and z = (0, 4, 0), then y and z are perpendicular and s(y, z) = cos θ = cos 90º = 0.

We can interpret these extremes in terms of a utility matrix. If y = (2, 1, 2) and z = (4, 2, 4), then z = 2y. They are very similar in that all three of the users rated item z twice as high as item y. But in the second example of (2, 0, 2) and (0, 4, 0), we can detect no similarity...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime