How can we ensure that our agent relies on a good balance of old and new strategies? This problem is made worse through the random initialization of weights for our Q-network. Since the predicted Q-values are a result of these random weights, the model will generate sub-optimal predictions at the initial training epochs, which in turn results in poor Q-value learning. Naturally, we don't want our network to rely too much on strategies it generates at first for given state-action pairs. Just like the dopamine addicted rat, the agent cannot be expected to perform well in the long term if it doesn't explore new strategies and expand its horizons instead of exploiting known strategies. To address this problem, we must implement a mechanism that encourages the agent to try out new actions, ignoring the learned Q-values. Doing so basically...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand