First, we need to estimate the value (V) of state (s) while following a specific policy (π). This tells you the expected cumulative reward at the terminal state of a game while following a policy (π) starting at state (s). Why is this useful? Well, imagine that our learning agent's environment is populated by enemies that are continuously chasing the agent. It may have developed a policy dictating it to never stop running during the whole game. In this case, the agent should have enough flexibility to evaluate the value of game states (when it runs up to the edge of a cliff, for example, so as to not run off it and die). We can do this by defining the value function at a given state, V π (s), as the expected cumulative (discounted) reward that the agent receives from following that policy, starting from the current state:
...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand