Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Essential Mathematics for Quantum Computing

You're reading from   Essential Mathematics for Quantum Computing A beginner's guide to just the math you need without needless complexities

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801073141
Length 252 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Leonard S. Woody III Leonard S. Woody III
Author Profile Icon Leonard S. Woody III
Leonard S. Woody III
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Introduction
2. Chapter 1: Superposition with Euclid FREE CHAPTER 3. Chapter 2: The Matrix 4. Section 2: Elementary Linear Algebra
5. Chapter 3: Foundations 6. Chapter 4: Vector Spaces 7. Chapter 5: Using Matrices to Transform Space 8. Section 3: Adding Complexity
9. Chapter 6: Complex Numbers 10. Chapter 7: EigenStuff 11. Chapter 8: Our Space in the Universe 12. Chapter 9: Advanced Concepts 13. Section 4: Appendices
14. Other Books You May Enjoy Appendix 1: Bra–ket Notation 1. Appendix 2: Sigma Notation 2. Appendix 3: Trigonometry 3. Appendix 4: Probability 4. Appendix 5: References

Chapter 9: Advanced Concepts

In this chapter, we will go into some advanced linear algebra concepts. These will not come up all the time in quantum computing, but when they do, you should know what they are and where to find information about them. Almost all the topics are about decomposing a matrix. This becomes important in quantum computing because when we come up with a unitary transformation that we'd like to do on a quantum computer, we will only have certain unitary operators to use on it. Then, it becomes a question of which combination of available operators we should use so that we can perform our overall unitary transformation. Along the way, we will also look at important inequalities and how to represent functions that have matrices in them.

In this chapter, we are going to cover the following main topics:

  • Gram-Schmidt
  • Cauchy-Schwarz and triangle inequalities
  • Spectral decomposition
  • Singular value decomposition
  • Polar decomposition
  • Operator...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime