Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Wrangling on AWS

You're reading from   Data Wrangling on AWS Clean and organize complex data for analysis

Arrow left icon
Product type Paperback
Published in Jul 2023
Publisher Packt
ISBN-13 9781801810906
Length 420 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Sankar M Sankar M
Author Profile Icon Sankar M
Sankar M
Navnit Shukla Navnit Shukla
Author Profile Icon Navnit Shukla
Navnit Shukla
Sam Palani Sam Palani
Author Profile Icon Sam Palani
Sam Palani
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1:Unleashing Data Wrangling with AWS
2. Chapter 1: Getting Started with Data Wrangling FREE CHAPTER 3. Part 2:Data Wrangling with AWS Tools
4. Chapter 2: Introduction to AWS Glue DataBrew 5. Chapter 3: Introducing AWS SDK for pandas 6. Chapter 4: Introduction to SageMaker Data Wrangler 7. Part 3:AWS Data Management and Analysis
8. Chapter 5: Working with Amazon S3 9. Chapter 6: Working with AWS Glue 10. Chapter 7: Working with Athena 11. Chapter 8: Working with QuickSight 12. Part 4:Advanced Data Manipulation and ML Data Optimization
13. Chapter 9: Building an End-to-End Data-Wrangling Pipeline with AWS SDK for Pandas 14. Chapter 10: Data Processing for Machine Learning with SageMaker Data Wrangler 15. Part 5:Ensuring Data Lake Security and Monitoring
16. Chapter 11: Data Lake Security and Monitoring 17. Index 18. Other Books You May Enjoy

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

import sysimport awswrangler as wr
print(wr.__version__)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe' WITH SERDEPROPERTIES (    "input.regex" = "^([\\w\\s.+-]{11})\\s([\\w\\s.+-]{8})\\s([\\
    w\\s.+-]{9})\\s([\\w]{4})\\s([\\d]{4})\\s([\\d]{4})")
LOCATION 's3://<<location your file/'

Any command-line input or output is written as follows:

git clone https://github.com/aws-samples/aws-database-migrationsamples.gitcd aws-database-migration-samples/mysql/sampledb/v1/

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Click on the Upload button.”

Tips or important notes

Appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image