Univariate Feature Selection: What It Does and Doesn't Do
In this chapter, we have learned techniques for going through features one by one to see whether they have predictive power. This is a good first step, and if you already have features that are very predictive of the outcome variable, you may not need to spend much more time considering features before modeling. However, there are drawbacks to univariate feature selection. In particular, it does not consider the interactions between features. For example, what if the credit default rate is very high specifically for people with a certain education level and a certain range of credit limit?
Also, with the methods we used here, only the linear effects of features are captured. If a feature is more predictive when it's undergone some type of transformation, such as a polynomial or logarithmic transformation, or binning (discretization), linear techniques of univariate feature selection may not be effective. Interactions and transformations...