Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Autodesk Inventor 2023 Cookbook

You're reading from   Autodesk Inventor 2023 Cookbook A guide to gaining advanced modeling and automation skills for design engineers through actionable recipes

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781801810500
Length 664 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Alexander Bordino Alexander Bordino
Author Profile Icon Alexander Bordino
Alexander Bordino
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Chapter 1: Inventor Part Modeling – Sketch, Work Features, and Best Practices 2. Chapter 2: Advanced Design Methodologies and Strategies FREE CHAPTER 3. Chapter 3: Driving Automation and Parametric Modeling in Inventor 4. Chapter 4: Freeform, Surface Modeling, and Analysis 5. Chapter 5: Advanced CAD Management and Collaboration – Project Files, Templates, and Custom Properties 6. Chapter 6: Inventor Assembly Fundamentals – Constraints, Joints, and BOMS 7. Chapter 7: Model and Assembly Simplification with Simplify, Derive, and Model States 8. Chapter 8: Design Accelerators – Specialized Inventor Tool Sets for Frames, Shafts, and Bolted Connections 9. Chapter 9: Design Communication – Inventor Studio, Animation, Rendering, and Presentation Files 10. Chapter 10: Inventor iLogic Fundamentals — Creating Process Automation and Configurations 11. Chapter 11: Inventor Stress and Simulation – Workflow and Techniques 12. Chapter 12: Sheet Metal Design – Comprehensive Methodologies to Create Sheet Metal Products 13. Chapter 13: Inventor Professional 2023 – What’s New? 14. Index 15. Other Books You May Enjoy

Applying and using adaptive modeling

Adaptive modeling involves creating parts within the context of an assembly. An initial part is created and then placed and grounded within an assembly file. Other parts are created in place from the original part in the assembly file.

In this recipe, you will take an imported flange coupling assembly and create a mating plate and gasket that are adaptively linked. This means that as changes are made in one component, they will automatically be reflected in the linked components, without manual design changes. This is known as an adaptive link.

Getting ready

In the Chapter 2 folder, select the Flange Coupling folder. Then, open Flange Coupling.iam.

How to do it…

To begin, we will open the existing assembly. Then, we will create new components within the context of it:

  1. With the Flange Coupling.iam assembly open, navigate to the top left of the screen, to the Assemble tab, and select Create. The menu shown in Figure 2.68 will appear.
  2. Enter Gasket for New Component Name and set Template to Metric\ Standard (mm).ipt. Ensure New File Location is set to C:\Inventor\Inventor Cookbook 2023\Chapter 2\Flange Coupling\.
Figure 2.68: Create button in the ribbon, with the Create In-Place Component window active

Figure 2.68: Create button in the ribbon, with the Create In-Place Component window active

  1. Select OK. Inventor then prompts you to pick a face or plane to build the new component. Select the face highlighted in Figure 2.69:
Figure 2.69: Face selected

Figure 2.69: Face selected

  1. The model will now turn transparent. Select Start 2D Sketch and pick the same face previously selected, in step 3.
  2. In the new sketch, select the Project Geometry command, and then select the face shown in Figure 2.70 to project all the edges shown:
Figure 2.70: Projected geometry shown

Figure 2.70: Projected geometry shown

  1. Select the Extrude command and select the profile previously created in step 5. Extrude the gasket by 1.5 mm and select OK.
Figure 2.71: Extrusion of previously created projected geometry

Figure 2.71: Extrusion of previously created projected geometry

  1. Select Return to complete the gasket. Notice that in the Model Browser, next to the recently created gasket, blue and red arrows are placed next to some features. This indicates that adaptivity has been created through the projection of geometry (if edits are made to the parent part, then these will be reflected in the child parts). Figure 2.72 shows the adaptive symbols in the Model Browser:
Figure 2.72: Adaptive symbols in the browser shown after the creation of the gasket

Figure 2.72: Adaptive symbols in the browser shown after the creation of the gasket

  1. In the top level of the assembly, create a new in-place component using Create as before, but this time select the top face of the recently created gasket to build the part on. Call the new component Mating Plate and set Template to standard (mm) .ipt.
  2. Select Start 2D Sketch on the top face of the gasket and select Project Geometry, as shown in Figure 2.73:
Figure 2.73: Projected sketch on top of the gasket for the creation of the mating plate

Figure 2.73: Projected sketch on top of the gasket for the creation of the mating plate

  1. Select Finish Sketch, and then select Extrude. Extrude the profiles shown in Figure 2.74 by 3.5 mm. Select OK to complete the operation.
Figure 2.74: Extrusion of the mating plate

Figure 2.74: Extrusion of the mating plate

  1. All additional adaptive parts have now been created. To observe the adaptivity, we will make changes to the original flange coupling components and observe how the newly created parts adapt:
    • Right-click on Flange 1 from the Model Browser and select Edit.
    • Expand the Extrusion 2 node and right-click on Sketch2, then select Edit Sketch.
    • Change the dimension of the small hole to 2 mm; simply double-click Dimension and type the new value. The sketch holes update on completion.
  2. Select Exit Sketch, then select Return to return to the top-level assembly.

The Mating Plate and Gasket holes have now automatically updated to show the holes as 2 mm. No manual design work was required to complete this.

  1. In the Model Browser, click Flange 1 | Extrusion 2, right-click Sketch2, then edit the value back from 2 mm to 5 mm. Exit and return to the top-level assembly and the parts will update, demonstrating adaptivity again.

This recipe is complete. You have created adaptive parts from an existing part file in the context of an assembly using the adaptive part modeling methodology.

You have been reading a chapter from
Autodesk Inventor 2023 Cookbook
Published in: Nov 2022
Publisher: Packt
ISBN-13: 9781801810500
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image