Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence with Python

You're reading from   Artificial Intelligence with Python A Comprehensive Guide to Building Intelligent Apps for Python Beginners and Developers

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781786464392
Length 446 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Introduction to Artificial Intelligence FREE CHAPTER 2. Classification and Regression Using Supervised Learning 3. Predictive Analytics with Ensemble Learning 4. Detecting Patterns with Unsupervised Learning 5. Building Recommender Systems 6. Logic Programming 7. Heuristic Search Techniques 8. Genetic Algorithms 9. Building Games With Artificial Intelligence 10. Natural Language Processing 11. Probabilistic Reasoning for Sequential Data 12. Building A Speech Recognizer 13. Object Detection and Tracking 14. Artificial Neural Networks 15. Reinforcement Learning 16. Deep Learning with Convolutional Neural Networks

Converting words to their base forms using lemmatization


Lemmatization is another way of reducing words to their base forms. In the previous section, we saw that the base forms that were obtained from those stemmers didn't make sense. For example, all the three stemmers said that the base form of calves is calv, which is not a real word. Lemmatization takes a more structured approach to solve this problem.

The lemmatization process uses a vocabulary and morphological analysis of words. It obtains the base forms by removing the inflectional word endings such as ing or ed. This base form of any word is known as the lemma. If you lemmatize the word calves, you should get calf as the output. One thing to note is that the output depends on whether the word is a verb or a noun. Let's take a look at how to do this using NLTK.

Create a new python file and import the following packages:

from nltk.stem import WordNetLemmatizer 

Define some input words. We will be using the same set of words that...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime