Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Applying Math with Python

You're reading from   Applying Math with Python Practical recipes for solving computational math problems using Python programming and its libraries

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838989750
Length 358 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Basic Packages, Functions, and Concepts 2. Mathematical Plotting with Matplotlib FREE CHAPTER 3. Calculus and Differential Equations 4. Working with Randomness and Probability 5. Working with Trees and Networks 6. Working with Data and Statistics 7. Regression and Forecasting 8. Geometric Problems 9. Finding Optimal Solutions 10. Miscellaneous Topics 11. Other Books You May Enjoy

Solving simple differential equations numerically

Differential equations arise in situations where a quantity evolves, usually over time, according to a given relationship. They are extremely common in engineering and physics, and appear quite naturally. One of the classic examples of a (very simple) differential equation is the law of cooling devised by Newton. The temperature of a body cools at a rate proportional to the current temperature. Mathematically, this means that we can write the derivative of the temperature T of the body at time t > 0 using the differential equation

where k is a positive constant that determines the rate of cooling. This differential equation can be solved analytically by first "separating the variables" and then integrating and rearranging. After performing this procedure, we obtain the general solution

where T0 is the initial temperature.

In this recipe...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image