Practical applications of Amdahl's Law
As we have discussed, by analyzing the sequential and parallelizable portion of a given program or system with Amdahl's Law, we can determine, or at least estimate, the upper limit of any potential improvements in speed resulting from parallel computing. Upon obtaining this estimation, we can then make an informed decision on whether an improved execution time is worth an increase in processing power.
From our examples, we can see that Amdahl's Law is applied when you have a concurrent program that is a mixture of both sequentially and executed-in-parallels instructions. By performing analysis using Amdahl's Law, we can determine the speedup through each incrementation of the number of cores available to perform the execution, as well as how close that incrementation is to helping the program achieve the best possible speedup from parallelization.
Now, let's come back to the initial problem that we raised at the beginning of the chapter: the trade-off...