Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Deep Learning with Keras Workshop

You're reading from   The Deep Learning with Keras Workshop Learn how to define and train neural network models with just a few lines of code

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800562967
Length 496 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Matthew Moocarme Matthew Moocarme
Author Profile Icon Matthew Moocarme
Matthew Moocarme
Mahla Abdolahnejad Mahla Abdolahnejad
Author Profile Icon Mahla Abdolahnejad
Mahla Abdolahnejad
Ritesh Bhagwat Ritesh Bhagwat
Author Profile Icon Ritesh Bhagwat
Ritesh Bhagwat
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Machine Learning with Keras 2. Machine Learning versus Deep Learning FREE CHAPTER 3. Deep Learning with Keras 4. Evaluating Your Model with Cross-Validation Using Keras Wrappers 5. Improving Model Accuracy 6. Model Evaluation 7. Computer Vision with Convolutional Neural Networks 8. Transfer Learning and Pre-Trained Models 9. Sequential Modeling with Recurrent Neural Networks Appendix

Convolutional Neural Networks

When we talk about computer vision, we talk about CNNs in the same breath. CNN is a class of deep neural network that is mostly used in the field of computer vision and imaging. CNNs are used to identify images, cluster them by their similarity, and implement object recognition within scenes. CNN has different layers— namely, the input layer, the output layer, and multiple hidden layers. These hidden layers of a CNN consist of fully connected layers, convolutional layers, a ReLU layer as an activation function, normalization layers, and pooling layers. On a very simple level, CNNs help us identify images and label them appropriately; for example, a tiger image will be identified as a tiger:

Figure 7.1: A generalized CNN

The following is an example of a CNN classifying a tiger:

Figure 7.2: A CNN classifying an image of a tiger into the class "Tiger"

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime