Machine translation is often done using so-called statistical machine translation, based on statistical models. This approach works very well, but a key issue is that, for every pair of languages, we need to rebuild the architecture. Thankfully, in 2014, Cho et al. (https://arxiv.org/pdf/1406.1078.pdf) came out with a paper that aims to solve this, and other problems, using the increasingly popular recurrent neural networks. The model is called sequence-to-sequence, and has the ability to be trained on any pair of languages by just providing the right amount of data. In addition, its power lies in its ability to match sequences of different lengths, such as in machine translation, where a sentence in English may have a different size when compared to a sentence in Spanish. Let's examine how these tasks...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine