Building an object recognizer
Now that we trained an ERF model, let's go ahead and build an object recognizer that can recognize the content of unknown images.
How to do it…
Create a new Python file, and import the following packages:
import argparse import cPickle as pickle import cv2 import numpy as np import build_features as bf from trainer import ERFTrainer
Define the argument parser:
def build_arg_parser(): parser = argparse.ArgumentParser(description='Extracts features \ from each line and classifies the data') parser.add_argument("--input-image", dest="input_image", required=True, help="Input image to be classified") parser.add_argument("--model-file", dest="model_file", required=True, help="Input file containing the trained model") parser.add_argument("--codebook-file", dest="codebook_file", required=True, help="Input file containing the codebook") return parser
Define a class to handle the image tag extraction functions:
class ImageTagExtractor(object): def...