Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning by Example

You're reading from   Python Machine Learning by Example Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781800209718
Length 526 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Machine Learning and Python 2. Building a Movie Recommendation Engine with Naïve Bayes FREE CHAPTER 3. Recognizing Faces with Support Vector Machine 4. Predicting Online Ad Click-Through with Tree-Based Algorithms 5. Predicting Online Ad Click-Through with Logistic Regression 6. Scaling Up Prediction to Terabyte Click Logs 7. Predicting Stock Prices with Regression Algorithms 8. Predicting Stock Prices with Artificial Neural Networks 9. Mining the 20 Newsgroups Dataset with Text Analysis Techniques 10. Discovering Underlying Topics in the Newsgroups Dataset with Clustering and Topic Modeling 11. Machine Learning Best Practices 12. Categorizing Images of Clothing with Convolutional Neural Networks 13. Making Predictions with Sequences Using Recurrent Neural Networks 14. Making Decisions in Complex Environments with Reinforcement Learning 15. Other Books You May Enjoy
16. Index

Implementing a decision tree from scratch

We develop the CART tree algorithm by hand on a toy dataset as follows:

Figure 4.8: An example of ad data

To begin with, we decide on the first splitting point, the root, by trying out all possible values for each of the two features. We utilize the weighted_impurity function we just defined to calculate the weighted Gini Impurity for each possible combination, as follows:

Gini(interest, tech) = weighted_impurity([[1, 1, 0],
    [0, 0, 0, 1]]) = 0.405

Here, if we partition according to whether the user interest is tech, we have the 1st, 5th, and 6th samples for one group and the remaining samples for another group. Then the classes for the first group are [1, 1, 0], and the classes for the second group are [0, 0, 0, 1]:

Gini(interest, Fashion) = weighted_impurity([[0, 0],
    [1, 0, 1, 0, 1]]) = 0.343

Here, if we partition according to whether the user's interest is fashion, we have the 2nd and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime