Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Algorithmic Trading Cookbook

You're reading from   Python for Algorithmic Trading Cookbook Recipes for designing, building, and deploying algorithmic trading strategies with Python

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781835084700
Length 404 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jason Strimpel Jason Strimpel
Author Profile Icon Jason Strimpel
Jason Strimpel
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Chapter 1: Acquire Free Financial Market Data with Cutting-Edge Python Libraries 2. Chapter 2: Analyze and Transform Financial Market Data with pandas FREE CHAPTER 3. Chapter 3: Visualize Financial Market Data with Matplotlib, Seaborn, and Plotly Dash 4. Chapter 4: Store Financial Market Data on Your Computer 5. Chapter 5: Build Alpha Factors for Stock Portfolios 6. Chapter 6: Vector-Based Backtesting with VectorBT 7. Chapter 7: Event-Based Backtesting Factor Portfolios with Zipline Reloaded 8. Chapter 8: Evaluate Factor Risk and Performance with Alphalens Reloaded 9. Chapter 9: Assess Backtest Risk and Performance Metrics with Pyfolio 10. Chapter 10: Set Up the Interactive Brokers Python API 11. Chapter 11: Manage Orders, Positions, and Portfolios with the IB API 12. Chapter 12: Deploy Strategies to a Live Environment 13. Chapter 13: Advanced Recipes for Market Data and Strategy Management 14. Index 15. Other Books You May Enjoy

Resampling data for different time frames

Two types of resampling are upsampling, where data is converted into a higher frequency (such as daily data to hourly data), and downsampling, where data is converted into a lower frequency (such as daily data to monthly data). In financial data analysis, resampling can help in various ways. For instance, if you have daily stock prices, you can resample this data to calculate monthly or yearly average prices, which can be useful for long-term trend analysis. A common use case is when aligning trade and quote data. There are a lot more quotes than trades – often an order of magnitude more – and we may need to align the open, high, low, and closing quote prices to the open, high, low, and closing trade data. Since the quotes and trades will have different timestamps, resampling to a 1-second resolution is a great way to align these disparate data sources.

How to do it…

We’ll work on resampling stock price data...

You have been reading a chapter from
Python for Algorithmic Trading Cookbook
Published in: Aug 2024
Publisher: Packt
ISBN-13: 9781835084700
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image