Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Principles of Data Science
Principles of Data Science

Principles of Data Science: Understand, analyze, and predict data using Machine Learning concepts and tools , Second Edition

Arrow left icon
Profile Icon Sinan Ozdemir Profile Icon Kakade Profile Icon Tibaldeschi
Arrow right icon
$19.99 per month
Paperback Dec 2018 424 pages 2nd Edition
eBook
$27.98 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Sinan Ozdemir Profile Icon Kakade Profile Icon Tibaldeschi
Arrow right icon
$19.99 per month
Paperback Dec 2018 424 pages 2nd Edition
eBook
$27.98 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$27.98 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Principles of Data Science

Chapter 2. Types of Data

Now that we have had a basic introduction to the world of data science and understand why the field is so important, let's take a look at the various ways in which data can be formed. Specifically, in this chapter, we will look at the following topics:

  • Structured versus unstructured data
  • Quantitative versus qualitative data
  • The four levels of data

We will dive further into each of these topics by showing examples of how data scientists look at and work with data. The aim of this chapter is to familiarize ourselves with the fundamental ideas underpinning data science.

Flavors of data

In the field, it is important to understand the different flavors of data for several reasons. Not only will the type of data dictate the methods used to analyze and extract results, but knowing whether the data is unstructured, or perhaps quantitative, can also tell you a lot about the real-world phenomenon being measured.

The first thing to note is my use of the word data. In the last chapter, I defined data as merely being a collection of information. This vague definition exists because we may separate data into different categories and need our definition to be loose.

The next thing to remember while we go through this chapter is that for the most part, when I talk about the type of data, I will refer to either a specific characteristic of a dataset or to the entire dataset as a whole. I will be very clear about which one I refer to at any given time.

Why look at these distinctions?

It might seem worthless to stop and think about what type of data we have before getting into the fun stuff, such as statistics and machine learning, but this is arguably one of the most important steps you need to take to perform data science.

The same principle applies to data science. When given a dataset, it is tempting to jump right into exploring, applying statistical models, and researching the applications of machine learning in order to get results faster. However, if you don't understand the type of data that you are working with, then you might waste a lot of time applying models that are known to be ineffective with that specific type of data.

When given a new dataset, I always recommend taking about an hour (usually less) to make the distinctions mentioned in the following sections.

Structured versus unstructured data

The distinction between structured and unstructured data is usually the first question you want to ask yourself about the entire dataset. The answer to this question can mean the difference between needing three days or three weeks of time to perform a proper analysis.

The basic breakdown is as follows (this is a rehashed definition of organized and unorganized data in the first chapter):

  • Structured (organized) data: This is data that can be thought of as observations and characteristics. It is usually organized using a table method (rows and columns).
  • Unstructured (unorganized) data: This data exists as a free entity and does not follow any standard organization hierarchy.

Here are a few examples that could help you differentiate between the two:

  • Most data that exists in text form, including server logs and Facebook posts, is unstructured
  • Scientific observations, as recorded by careful scientists, are kept in a very neat and organized (structured) format
  • A...

Quantitative versus qualitative data

When you ask a data scientist, "what type of data is this?", they will usually assume that you are asking them whether or not it is mostly quantitative or qualitative. It is likely the most common way of describing the specific characteristics of a dataset.

For the most part, when talking about quantitative data, you are usually (not always) talking about a structured dataset with a strict row/column structure (because we don't assume unstructured data even has any characteristics). All the more reason why the pre-processing step is so important.

These two data types can be defined as follows:

  • Quantitative data: This data can be described using numbers, and basic mathematical procedures, including addition, are possible on the set.
  • Qualitative data: This data cannot be described using numbers and basic mathematics. This data is generally thought of as being described using natural categories and language.

Example – coffee shop data

Say...

The road thus far

So far in this chapter, we have looked at the differences between structured and unstructured data, as well as between qualitative and quantitative characteristics. These two simple distinctions can have drastic effects on the analysis that is performed. Allow me to summarize before moving on the second half of the chapter.

Data as a whole can either be structured or unstructured, meaning that the data can either take on an organized row/column structure with distinct features that describe each row of the dataset, or exist in a free-form state that usually must be pre-processed into a form that is easily digestible.

If data is structured, we can look at each column (feature) of the dataset as being either quantitative or qualitative. Basically, can the column be described using mathematics and numbers, or not? The next part of this chapter will break down data into four very specific and detailed levels. At each order, we will apply more complicated rules of mathematics...

The four levels of data

It is generally understood that a specific characteristic (feature/column) of structured data can be broken down into one of four levels of data. The levels are as follows:

  • The nominal level
  • The ordinal level
  • The interval level
  • The ratio level

As we move down the list, we gain more structure and, therefore, more returns from our analysis. Each level comes with its own accepted practice in measuring the center of the data. We usually think of the mean/average as being an acceptable form of a center. However, this is only true for a specific type of data.

The nominal level

The first level of data, the nominal level, consists of data that is described purely by name or category. Basic examples include gender, nationality, species, or yeast strain in a beer. They are not described by numbers and are therefore qualitative. The following are some examples:

  • A type of animal is on the nominal level of data. We may also say that if you are a chimpanzee, then you belong to the mammalian...

Data is in the eye of the beholder

It is possible to impose structure on data. For example, while I said that you technically cannot use a mean for the one to five data at the ordinal scale, many statisticians would not have a problem using this number as a descriptor of the dataset.

The level at which you are interpreting data is a huge assumption that should be made at the beginning of any analysis. If you are looking at data that is generally thought of at the ordinal level and applying tools such as the arithmetic mean and standard deviation, this is something that data scientists must be aware of. This is mainly because if you continue to hold these assumptions as valid in your analysis, you may encounter problems. For example, if you also assume divisibility at the ordinal level by mistake, you are imposing a structure where the structure may not exist.

Summary

The type of data that you are working with is a very large piece of data science. It must precede most of your analysis because the type of data you have impacts the type of analysis that is even possible!

Whenever you are faced with a new dataset, the first three questions you should ask about it are the following:

  • Is the data organized or unorganized? For example, does our data exist in a nice, clean row/column structure?
  • Is each column quantitative or qualitative? For example, are the values numbers, strings, or do they represent quantities?
  • At what level is the data in each column? For example, are the values at the nominal, ordinal, interval, or ratio level?

The answers to these questions will not only impact your knowledge of the data at the end but will also dictate the next steps of your analysis. They will dictate the types of graphs you are able to use and how you interpret them in your upcoming data models. Sometimes, we will have to convert from one level to another in order...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Enhance your knowledge of coding with the theory for practical insight in data science and analysis
  • More than just a math class; you’ll perform real-world data science tasks using Python
  • Get the best insights and transform your data to get tangible value out of it

Description

Need to turn programming skills into effective data science skills? This book helps you connect mathematics, programming, and business analysis. You’ll feel confident asking—and answering—complex, sophisticated questions of your data, making abstract and raw statistics into actionable ideas. Going through the data science pipeline, you'll clean and prepare data and learn effective data mining strategies and techniques to gain a comprehensive view of how the data science puzzle fits together. You’ll learn fundamentals of computational mathematics and statistics and pseudo-code used by data scientists and analysts. You’ll learn machine learning, discovering statistical models that help control and navigate even the densest datasets, and learn powerful visualizations that communicate what your data means.

Who is this book for?

If you are an aspiring data scientist who wants to take your first steps in data science, this book is for you. If you have the basic math skills but want to apply them in data science, or you have good programming skills but lack the necessary math, this book will also help you. Some knowledge of Python programming will also help.

What you will learn

  • Understand five most important steps of data science
  • Use your data intelligently and learn how to handle it with care
  • Bridge the gap between mathematics and programming
  • Drive actionable results and clean your data using statistical models, calculus, and probability
  • Build and evaluate baseline machine learning models
  • Explore effective metrics to determine the success of your machine learning models
  • Create data visualizations that communicate actionable insights
  • Apply machine learning concepts to your problems and make actual predictions

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 26, 2018
Length: 424 pages
Edition : 2nd
Language : English
ISBN-13 : 9781789804546
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Dec 26, 2018
Length: 424 pages
Edition : 2nd
Language : English
ISBN-13 : 9781789804546
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 136.97
Hands-On Big Data Modeling
$43.99
Principles of Data Science
$48.99
Data Wrangling with Python
$43.99
Total $ 136.97 Stars icon

Table of Contents

16 Chapters
1. How to Sound Like a Data Scientist Chevron down icon Chevron up icon
2. Types of Data Chevron down icon Chevron up icon
3. The Five Steps of Data Science Chevron down icon Chevron up icon
4. Basic Mathematics Chevron down icon Chevron up icon
5. Impossible or Improbable - A Gentle Introduction to Probability Chevron down icon Chevron up icon
6. Advanced Probability Chevron down icon Chevron up icon
7. Basic Statistics Chevron down icon Chevron up icon
8. Advanced Statistics Chevron down icon Chevron up icon
9. Communicating Data Chevron down icon Chevron up icon
10. How to Tell If Your Toaster Is Learning – Machine Learning Essentials Chevron down icon Chevron up icon
11. Predictions Don't Grow on Trees - or Do They? Chevron down icon Chevron up icon
12. Beyond the Essentials Chevron down icon Chevron up icon
13. Case Studies Chevron down icon Chevron up icon
14. Building Machine Learning Models with Azure Databricks and Azure Machine Learning service Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.