Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Optimizing Databricks Workloads

You're reading from   Optimizing Databricks Workloads Harness the power of Apache Spark in Azure and maximize the performance of modern big data workloads

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781801819077
Length 230 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Anshul Bhatnagar Anshul Bhatnagar
Author Profile Icon Anshul Bhatnagar
Anshul Bhatnagar
Sarthak Sarbahi Sarthak Sarbahi
Author Profile Icon Sarthak Sarbahi
Sarthak Sarbahi
Anirudh Kala Anirudh Kala
Author Profile Icon Anirudh Kala
Anirudh Kala
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Section 1: Introduction to Azure Databricks
2. Chapter 1: Discovering Databricks FREE CHAPTER 3. Chapter 2: Batch and Real-Time Processing in Databricks 4. Chapter 3: Learning about Machine Learning and Graph Processing in Databricks 5. Section 2: Optimization Techniques
6. Chapter 4: Managing Spark Clusters 7. Chapter 5: Big Data Analytics 8. Chapter 6: Databricks Delta Lake 9. Chapter 7: Spark Core 10. Section 3: Real-World Scenarios
11. Chapter 8: Case Studies 12. Other Books You May Enjoy

Learning about delta caching

Delta caching is an optimization technique that helps speed up queries by storing the data in the cluster node's local storage. The delta cache stores local copies of data that resides in remote locations such as Azure Data Lake or Azure Blob Storage. It improves the performance of a wide range of queries but cannot store the results of arbitrary subqueries.

Once delta caching has been enabled, any data that is fetched from an external location is automatically added to the cache. This process does not require action. To preload data into the delta cache, the CACHE command can be used. Any changes that have been made to the data persisted in the delta cache are automatically detected by the delta cache. The easiest way to use delta caching is to provision a cluster with Standard_L series worker types (Delta Cache Accelerated).

Now, we will go through a worked-out example with delta caching. To begin with, we will provide a new cluster with the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image