Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
NumPy Beginner's Guide

You're reading from   NumPy Beginner's Guide An action packed guide using real world examples of the easy to use, high performance, free open source NumPy mathematical library.

Arrow left icon
Product type Paperback
Published in Apr 2013
Publisher Packt
ISBN-13 9781782166085
Length 310 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Numpy Beginner's Guide Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. NumPy Quick Start FREE CHAPTER 2. Beginning with NumPy Fundamentals 3. Get in Terms with Commonly Used Functions 4. Convenience Functions for Your Convenience 5. Working with Matrices and ufuncs 6. Move Further with NumPy Modules 7. Peeking into Special Routines 8. Assure Quality with Testing 9. Plotting with Matplotlib 10. When NumPy is Not Enough – SciPy and Beyond 11. Playing with Pygame Pop Quiz Answers Index

IPython—an interactive shell


Scientists and engineers are used to experimenting. IPython was created by scientists with experimentation in mind. The interactive environment that IPython provides is viewed by many as a direct answer to Matlab, Mathematica, and Maple. You can find more information, including installation instructions, at: http://ipython.org/.

IPython is free, open source, and available for Linux, Unix, Mac OS X, and Windows. The IPython authors only request that you cite IPython in scientific work where IPython was used. Here is the list of basic IPython features:

  • Tab completion

  • History mechanism

  • Inline editing

  • Ability to call external Python scripts with %run

  • Access to system commands

  • Pylab switch

  • Access to Python debugger and profiler

The Pylab switch imports all the Scipy, NumPy, and Matplotlib packages. Without this switch, we would have to import every package we need, ourselves.

All we need to do is enter the following instruction on the command line:

$ ipython --pylab
Python 2.7.2 (default, Jun 20 2012, 16:23:33) 
Type "copyright", "credits" or "license" for more information.

IPython 0.14.dev -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

Welcome to pylab, a matplotlib-based Python environment [backend: MacOSX].
For more information, type 'help(pylab)'.
In [1]: quit()

The quit() function or Ctrl + D quits the IPython shell. We might want to be able to go back to our experiments. In IPython, it is easy to save a session for later:

In [1]: %logstart
Activating auto-logging. Current session state plus future input saved.
Filename       : ipython_log.py
Mode           : rotate
Output logging : False
Raw input log  : False
Timestamping   : False
State          : active

Let's say we have the vector addition program that we made in the current directory. We can run the script as follows:

In [1]: ls
README        vectorsum.py
In [2]: %run -i vectorsum.py 1000

As you probably remember, 1000 specifies the number of elements in a vector. The -d switch of %run starts an ipdb debugger and on typing c, the script is started. n steps through the code. Typing quit at the ipdb prompt exits the debugger.

In [2]: %run -d vectorsum.py 1000
*** Blank or comment
*** Blank or comment
Breakpoint 1 at: /Users/…/vectorsum.py:3
><string>(1)<module>()
ipdb> c
> /Users/…/vectorsum.py(3)<module>()
      2
1---> 3 import sys
      4 from datetime import datetime
ipdb> n
>
/Users/…/vectorsum.py(4)<module>()
1     3 import sys
----> 4 from datetime import datetime
      5 import numpy
ipdb> n
> /Users/…/vectorsum.py(5)<module>()
      4 from datetime import datetime
----> 5 import numpy
      6 
ipdb> quit

We can also profile our script by passing the -p option to %run.

In [4]: %run -p vectorsum.py 1000
         1058 function calls (1054 primitive calls) in 0.002 CPU seconds
   Ordered by: internal time
ncallstottimepercallcumtimepercallfilename:lineno(function)
1 0.001    0.001   0.001    0.001 vectorsum.py:28(pythonsum)
1 0.001    0.001   0.002    0.002 {execfile}
1000 0.000    0.0000.0000.000 {method 'append' of 'list' objects}
1 0.000    0.000    0.002    0.002 vectorsum.py:3(<module>)
1 0.000    0.0000.0000.000 vectorsum.py:21(numpysum)
3    0.000    0.0000.0000.000 {range}
1    0.000    0.0000.0000.000 arrayprint.py:175(_array2string)
3/1    0.000    0.0000.0000.000 arrayprint.py:246(array2string)
2    0.000    0.0000.0000.000 {method 'reduce' of 'numpy.ufunc' objects}
4    0.000    0.0000.0000.000 {built-in method now}
2    0.000    0.0000.0000.000 arrayprint.py:486(_formatInteger)
2    0.000    0.0000.0000.000 {numpy.core.multiarray.arange}
1    0.000    0.0000.0000.000 arrayprint.py:320(_formatArray)
3/1    0.000    0.0000.0000.000 numeric.py:1390(array_str)
1    0.000    0.0000.0000.000 numeric.py:216(asarray)
2    0.000    0.0000.0000.000 arrayprint.py:312(_extendLine)
1    0.000    0.0000.0000.000 fromnumeric.py:1043(ravel)
2    0.000    0.0000.0000.000 arrayprint.py:208(<lambda>)
1    0.000    0.000    0.002    0.002<string>:1(<module>)
11    0.000    0.0000.0000.000 {len}
2    0.000    0.0000.0000.000 {isinstance}
1    0.000    0.0000.0000.000 {reduce}
1    0.000    0.0000.0000.000 {method 'ravel' of 'numpy.ndarray' objects}
4    0.000    0.0000.0000.000 {method 'rstrip' of 'str' objects}
3    0.000    0.0000.0000.000 {issubclass}
2    0.000    0.0000.0000.000 {method 'item' of 'numpy.ndarray' objects}
1    0.000    0.0000.0000.000 {max}
1    0.000    0.0000.0000.000 {method 'disable' of '_lsprof.Profiler' objects}

This gives us a bit more insight into the workings of our program. In addition, we can now identify performance bottlenecks. The %hist command shows the commands history.

In [2]: a=2+2
In [3]: a
Out[3]: 4
In [4]: %hist
1: _ip.magic("hist ")
2: a=2+2
3: a

I hope you agree that IPython is a really useful tool!

You have been reading a chapter from
NumPy Beginner's Guide - Second Edition
Published in: Apr 2013
Publisher: Packt
ISBN-13: 9781782166085
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image