Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Master machine learning techniques with R to deliver insights for complex projects

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783984527
Length 400 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A Process for Success 2. Linear Regression – The Blocking and Tackling of Machine Learning FREE CHAPTER 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis and Recommendation Engines 11. Time Series and Causality 12. Text Mining A. R Fundamentals Index

Business case

The overall business objective in this situation is to see if we can improve the predictive ability for some of the cases that we already worked on in the previous chapters. For regression, we will revisit the prostate cancer dataset from Chapter 4, Advanced Feature Selection in Linear Models. The baseline mean squared error to improve on is 0.444.

For classification purposes, we will utilize both the breast cancer biopsy data from Chapter 3, Logistic Regression and Discriminant Analysis and the Pima Indian Diabetes data from Chapter 5, More Classification Techniques — K-Nearest Neighbors and Support Vector Machines. In the breast cancer data, we achieved 97.6 percent predictive accuracy. For the diabetes data, we are seeking to improve on the 79.6 percent accuracy rate.

Both random forests and boosting will be applied to all three datasets. The simple tree method will only be used on the breast and prostate cancer sets from Chapter 4, Advanced Feature Selection in Linear...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime