Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Machine Learning for Penetration Testing

You're reading from   Mastering Machine Learning for Penetration Testing Develop an extensive skill set to break self-learning systems using Python

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788997409
Length 276 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Chiheb Chebbi Chiheb Chebbi
Author Profile Icon Chiheb Chebbi
Chiheb Chebbi
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction to Machine Learning in Pentesting FREE CHAPTER 2. Phishing Domain Detection 3. Malware Detection with API Calls and PE Headers 4. Malware Detection with Deep Learning 5. Botnet Detection with Machine Learning 6. Machine Learning in Anomaly Detection Systems 7. Detecting Advanced Persistent Threats 8. Evading Intrusion Detection Systems 9. Bypassing Machine Learning Malware Detectors 10. Best Practices for Machine Learning and Feature Engineering 11. Assessments 12. Other Books You May Enjoy

Questions

We hope it was easy to go through this chapter. Now, as usual, it is practice time. Your job is to try building your own spam detection system. We will guide you through the questions.

In this chapter's GitHub repository, you will find a dataset collected from research done by Androutsopoulos, J. Koutsias, K.V. Chandrinos, George Paliouras, and C.D. Spyropoulos: An Evaluation of Naive Bayesian Anti-Spam Filtering. Proceedings of the workshop on Machine Learning in the New Information Age, G. Potamias, V. Moustakis and M. van Someren (eds.), 11th European Conference on Machine Learning, Barcelona, Spain, pp. 9-17, 2000.

You can now prepare the data:

  1. The following are some text-cleaning tasks to perform:
    • Clean your texts of stopwords, digits, and punctuation marks.
    • Perform lemmatization.
  2. Create a word dictionary, including their frequencies.
In email texts, you...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image