Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Managing Data Science

You're reading from   Managing Data Science Effective strategies to manage data science projects and build a sustainable team

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838826321
Length 290 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Kirill Dubovikov Kirill Dubovikov
Author Profile Icon Kirill Dubovikov
Kirill Dubovikov
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

1. Section 1: What is Data Science? FREE CHAPTER
2. What You Can Do with Data Science 3. Testing Your Models 4. Understanding AI 5. Section 2: Building and Sustaining a Team
6. An Ideal Data Science Team 7. Conducting Data Science Interviews 8. Building Your Data Science Team 9. Section 3: Managing Various Data Science Projects
10. Managing Innovation 11. Managing Data Science Projects 12. Common Pitfalls of Data Science Projects 13. Creating Products and Improving Reusability 14. Section 4: Creating a Development Infrastructure
15. Implementing ModelOps 16. Building Your Technology Stack 17. Conclusion 18. Other Books You May Enjoy

Introduction to causal inference

Up to this point, we have talked about predictive models. The main purpose of a predictive model is to recognize and forecast. The explanation behind the model's reasoning is of lower priority. On the contrary, causal inference tries to explain relationships in the data rather than to make predictions about the future events. In causal inference, we check whether an outcome of some action was not caused by so-called confounding variables. Those variables can indirectly influence action through the outcome. Let's compare causal inference and predictive models through several questions that they can help to answer:

  • Prediction models:
    • When will our sales double?
    • What is the probability of this client buying a certain product?
  • Causal inference models:
    • Was this cancer treatment effective? Or is the effect apparent only because of the...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image