Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Mobile

You're reading from   Machine Learning for Mobile Practical guide to building intelligent mobile applications powered by machine learning

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781788629355
Length 274 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Avinash Venkateswarlu Avinash Venkateswarlu
Author Profile Icon Avinash Venkateswarlu
Avinash Venkateswarlu
Revathi Gopalakrishnan Revathi Gopalakrishnan
Author Profile Icon Revathi Gopalakrishnan
Revathi Gopalakrishnan
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Machine Learning on Mobile FREE CHAPTER 2. Supervised and Unsupervised Learning Algorithms 3. Random Forest on iOS 4. TensorFlow Mobile in Android 5. Regression Using Core ML in iOS 6. The ML Kit SDK 7. Spam Message Detection 8. Fritz 9. Neural Networks on Mobile 10. Mobile Application Using Google Vision 11. The Future of ML on Mobile Applications 12. Question and Answers 13. Other Books You May Enjoy

Understanding linear SVM algorithm


InChapter 2, Supervised and Unsupervised Learning Algorithms, we covered the SVM algorithm and now have an idea of how the SVM model works. A linear support vector machine or linear SVM is a linear classifier that tries to find a hyperplane with the largest margin that splits the input space into two regions. 

Note

A hyperplane is a generalization of a plane. In one dimension, a hyperplane is called a point. In two dimensions, it is a line. In three dimensions, it is a plane. In more dimensions, you can call it a hyperplane.

As we saw, the goal of SVM is to identify the hyperplane that tries to find the largest margin that splits the input space into two regions. If the input space is linearly separable, it is easy to separate them. However, in real life, we find that the input space is very non-linear:

In the preceding scenario, the SVM can help us separate the red and blue balls by using what is called a Kernel Trick, which is the method of using a linear...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime