Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Automation with TPOT

You're reading from   Machine Learning Automation with TPOT Build, validate, and deploy fully automated machine learning models with Python

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781800567887
Length 270 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dario Radečić Dario Radečić
Author Profile Icon Dario Radečić
Dario Radečić
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Introducing Machine Learning and the Idea of Automation
2. Chapter 1: Machine Learning and the Idea of Automation FREE CHAPTER 3. Section 2: TPOT – Practical Classification and Regression
4. Chapter 2: Deep Dive into TPOT 5. Chapter 3: Exploring Regression with TPOT 6. Chapter 4: Exploring Classification with TPOT 7. Chapter 5: Parallel Training with TPOT and Dask 8. Section 3: Advanced Examples and Neural Networks in TPOT
9. Chapter 6: Getting Started with Deep Learning: Crash Course in Neural Networks 10. Chapter 7: Neural Network Classifier with TPOT 11. Chapter 8: TPOT Model Deployment 12. Chapter 9: Using the Deployed TPOT Model in Production 13. Other Books You May Enjoy

Applying automated regression modeling to the insurance dataset

This section demonstrates how to apply an automated machine learning solution to a slightly more complicated dataset. You will use the medical insurance cost dataset (https://www.kaggle.com/mirichoi0218/insurance) to predict how much insurance will cost based on a couple of predictor variables. You will learn how to load the dataset, perform exploratory data analysis, how to prepare it, and how to find the best machine learning pipeline with TPOT:

  1. As with the previous example, the first step is to load in the libraries and the dataset. We'll need numpy, pandas, matplotlib, and seaborn to start with the analysis. Here's how to import the libraries and load the dataset:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from matplotlib import rcParams
    rcParams['axes.spines.top'] = False
    rcParams['axes.spines.right'] = False
    df = pd.read_csv(...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime