Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learn Python by Building Data Science Applications

You're reading from   Learn Python by Building Data Science Applications A fun, project-based guide to learning Python 3 while building real-world apps

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781789535365
Length 482 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Philipp Kats Philipp Kats
Author Profile Icon Philipp Kats
Philipp Kats
David Katz David Katz
Author Profile Icon David Katz
David Katz
Arrow right icon
View More author details
Toc

Table of Contents (26) Chapters Close

Preface 1. Section 1: Getting Started with Python
2. Preparing the Workspace FREE CHAPTER 3. First Steps in Coding - Variables and Data Types 4. Functions 5. Data Structures 6. Loops and Other Compound Statements 7. First Script – Geocoding with Web APIs 8. Scraping Data from the Web with Beautiful Soup 4 9. Simulation with Classes and Inheritance 10. Shell, Git, Conda, and More – at Your Command 11. Section 2: Hands-On with Data
12. Python for Data Applications 13. Data Cleaning and Manipulation 14. Data Exploration and Visualization 15. Training a Machine Learning Model 16. Improving Your Model – Pipelines and Experiments 17. Section 3: Moving to Production
18. Packaging and Testing with Poetry and PyTest 19. Data Pipelines with Luigi 20. Let's Build a Dashboard 21. Serving Models with a RESTful API 22. Serverless API Using Chalice 23. Best Practices and Python Performance 24. Assessments 25. Other Books You May Enjoy

Chapter 20

How can we measure which line in the code took the most time to complete?

The simplest way to do that is via a utility called line__profiler. This utility will show each line of the given code and show how much time was spent on each line. Knowing the distribution of the time that was required helps us focus on the right parts of the code.

Does NumPy run faster than Pandas?

In most cases with numeric computations, Pandas uses NumPy under the hood, so the difference is minimal. It does, however, spend certain additional time on building series and dataframes, when needed. So, for a well-scoped and purely numeric task, it makes sense to switch to pure NumPy.

When should we use Numba? What are the challenges and benefits of using Numba?

Numba uses a modern C compiler with some modern techniques to significantly improve performance. It can also be run on a GPU. Its &quot...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime