Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Julia for Data Science

You're reading from   Julia for Data Science high-performance computing simplified

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785289699
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Anshul Joshi Anshul Joshi
Author Profile Icon Anshul Joshi
Anshul Joshi
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. The Groundwork – Julia's Environment 2. Data Munging FREE CHAPTER 3. Data Exploration 4. Deep Dive into Inferential Statistics 5. Making Sense of Data Using Visualization 6. Supervised Machine Learning 7. Unsupervised Machine Learning 8. Creating Ensemble Models 9. Time Series 10. Collaborative Filtering and Recommendation System 11. Introduction to Deep Learning

Understanding decision trees


A decision tree is a very good example of "divide and conquer". It is one of the most practical and widely used methods for inductive inference. It is a supervised learning method that can be used for both classification and regression. It is non-parametric and its aim is to learn by inferring simple decision rules from the data and create such a model that can predict the value of the target variable.

Before taking a decision, we analyze the probability of the pros and cons by weighing the different options that we have. Let's say we want to purchase a phone and we have multiple choices in the price segment. Each of the phones has something really good, and maybe better than the other. To make a choice, we start by considering the most important feature that we want. And as such, we create a series of features that it has to pass to become the ultimate choice.

In this section, we will learn about:

  • Decision trees

  • Entropy measures

  • Random forests

We will also learn about...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image