Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java Deep Learning Cookbook

You're reading from   Java Deep Learning Cookbook Train neural networks for classification, NLP, and reinforcement learning using Deeplearning4j

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781788995207
Length 304 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rahul Raj Rahul Raj
Author Profile Icon Rahul Raj
Rahul Raj
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Deep Learning in Java 2. Data Extraction, Transformation, and Loading FREE CHAPTER 3. Building Deep Neural Networks for Binary Classification 4. Building Convolutional Neural Networks 5. Implementing Natural Language Processing 6. Constructing an LSTM Network for Time Series 7. Constructing an LSTM Neural Network for Sequence Classification 8. Performing Anomaly Detection on Unsupervised Data 9. Using RL4J for Reinforcement Learning 10. Developing Applications in a Distributed Environment 11. Applying Transfer Learning to Network Models 12. Benchmarking and Neural Network Optimization 13. Other Books You May Enjoy

Preface

Deep learning has helped many industries/companies to solve big challenges, enhance their products, and strengthen their infrastructure. The advantage of deep learning is that you neither have to design decision-making algorithms nor make decisions regarding important dataset features. Your neural network is capable of doing both. We have seen enough theoretical books that leave the audience all at sea having explained complex concepts. It is also important to know how/when you can apply what you have learned, especially in relation to enterprise. This is a concern for advanced technologies such as deep learning. You may have undertaken capstone projects, but you also want to take your knowledge to the next level.

Of course, there are best practices in enterprise development that we may not cover in this book. We don't want readers to question themselves about the purpose of developing an application if it is too tedious to deploy in production. We want something very straightforward, targeting the largest developer community in the world. We have used DL4J (short for Deeplearning4j) throughout this book to demonstrate examples for the same reason. It has DataVec for ETL (short for Extract, Transform, and Load), ND4J as a scientific computation library, and a DL4J core library to develop and deploy neural network models in production. There are cases where DL4J outperforms some of the major deep learning libraries on the market. We are not degrading other libraries, as it all depends on what you want to do with them. You may also try accommodating multiple libraries in different phases if you don't want to bother switching to multiple technical stacks.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime