Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On RESTful Python Web Services

You're reading from   Hands-On RESTful Python Web Services Develop RESTful web services or APIs with modern Python 3.7

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher
ISBN-13 9781789532227
Length 500 pages
Edition 2nd Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gaston C. Hillar Gaston C. Hillar
Author Profile Icon Gaston C. Hillar
Gaston C. Hillar
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Developing RESTful APIs and Microservices with Flask 1.0.2 FREE CHAPTER 2. Working with Models, SQLAlchemy, and Hyperlinked APIs in Flask 3. Improving Our API and Adding Authentication to it with Flask 4. Testing and Deploying an API in a Microservice with Flask 5. Developing RESTful APIs with Django 2.1 6. Working with Class-Based Views and Hyperlinked APIs in Django 2.1 7. Improving Our API and Adding Authentication to it with Django 8. Throttling, Filtering, Testing, and Deploying an API with Django 2.1 9. Developing RESTful APIs with Pyramid 1.10 10. Developing RESTful APIs with Tornado 5.1.1 11. Working with Asynchronous Code, Testing, and Deploying an API with Tornado 12. Assessment 13. Other Books You May Enjoy

Designing a RESTful API to interact with a simple data source

Imagine that we have to configure the notification messages to be displayed in an OLED (short for Organic Light Emitting Diode) display wired to an IoT device. The IoT device is capable of running Python 3.7.1, Flask 1.0.2, and other Python packages. There is a team writing code that retrieves string messages that represent notifications from a dictionary and displays them in the OLED display wired to the IoT device. We have to start working on a mobile app and a website that has to interact with a RESTful API to perform CRUD operations with string messages that represent notifications.

We don't need an ORM (short for Object-Relational Mapping) because we won't persist the notifications on a database. We will just work with an in-memory dictionary as our data source. It is one of the requirements we have for this RESTful API. In this case, the RESTful Web Service will be running on the IoT device; that is, we will run the Flask development service on the IoT device.

We will definitely lose scalability for our RESTful API because we have the in-memory data source in the service, and therefore we cannot run the RESTful API in another IoT device. However, we will work with another example that is related to a more complex data source that will be able to scale in the RESTful way later. The first example is going to allow us to understand how Flask and Flask-RESTful work together with a very simple in-memory data source.

We have chosen Flask because it is an extremely lightweight framework, we don't need to configure an ORM, and we want to start running the RESTful API on the IoT device as soon as possible to allow all the teams to interact with it. We consider that there will be a website that will be coded with Flask too, and therefore, we want to use the same web micro-framework to power the website and the RESTful Web Service. In addition, Flask is an appropriate choice to create a microservice that can run our RESTful API on the cloud.

There are many extensions available for Flask that make it easier to perform specific tasks with the Flask micro-framework. We will take advantage of Flask-RESTful, an extension that will allow us to encourage best practices while building our RESTful API. In this case, we will work with a Python dictionary as the data source. As previously explained, we will work with more complex data sources in forthcoming examples.

First, we must specify the requirements for our main resource—a notification. We need the following attributes or fields for a notification:

  • An integer identifier.
  • A string message.
  • A TTL (short for Time to Live), that is, a duration in seconds that will indicate the time the notification message has to be displayed on the OLED display.
  • A creation date and time. The timestamp will be added automatically when adding a new notification to the collection.
  • A notification category description, such as Warning or Information.
  • An integer counter that indicates the times when the notification message has been displayed on the OLED display.
  • A Boolean value that indicates whether the notification message was displayed at least once on the OLED display.

The following table shows the HTTP verbs, the scope, and the semantics for the methods that our first version of the API must support. Each method is composed of an HTTP verb and a scope, and all the methods have a well-defined meaning for all notifications and collections. In our API, each notification has its own unique URL:

HTTP verb

Scope

Semantics

GET

Collection of notifications

Retrieve all the stored notifications in the collection.

GET

Notification

Retrieve a single notification.

POST

Collection of notifications

Create a new notification in the collection.

PATCH

Notification

Update one or more fields for an existing notification.

DELETE

Notification

Delete an existing notification.

You have been reading a chapter from
Hands-On RESTful Python Web Services - Second Edition
Published in: Dec 2018
Publisher:
ISBN-13: 9781789532227
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime