Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Music Generation with Magenta

You're reading from   Hands-On Music Generation with Magenta Explore the role of deep learning in music generation and assisted music composition

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher
ISBN-13 9781838824419
Length 360 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alexandre DuBreuil Alexandre DuBreuil
Author Profile Icon Alexandre DuBreuil
Alexandre DuBreuil
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Introduction to Artwork Generation
2. Introduction to Magenta and Generative Art FREE CHAPTER 3. Section 2: Music Generation with Machine Learning
4. Generating Drum Sequences with the Drums RNN 5. Generating Polyphonic Melodies 6. Latent Space Interpolation with MusicVAE 7. Audio Generation with NSynth and GANSynth 8. Section 3: Training, Learning, and Generating a Specific Style
9. Data Preparation for Training 10. Training Magenta Models 11. Section 4: Making Your Models Interact with Other Applications
12. Magenta in the Browser with Magenta.js 13. Making Magenta Interact with Music Applications 14. Assessments 15. Other Books You May Enjoy

Chapter 4: Latent Space Interpolation with MusicVAE

  1. The main use is dimensionality reduction, to force the network to learn important features, making it possible to reconstruct the original input. The downside of AE is that the latent space represented by the hidden layer is not continuous, making it hard to sample since the decoder won't be able to make sense of some of the points.

  2. The reconstruction loss penalizes the network when it creates outputs that are different from the input.
  3. In VAE, the latent space is continuous and smooth, making it possible to sample any point of the space and interpolate between two points. It is achieved by having the latent variables follow a probability distribution of P(z), often a Gaussian distribution.
  4. The KL divergence measures how much two probability distributions diverge from each other. When combined with the reconstruction loss...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime