Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Meta Learning with Python

You're reading from   Hands-On Meta Learning with Python Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789534207
Length 226 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to Meta Learning 2. Face and Audio Recognition Using Siamese Networks FREE CHAPTER 3. Prototypical Networks and Their Variants 4. Relation and Matching Networks Using TensorFlow 5. Memory-Augmented Neural Networks 6. MAML and Its Variants 7. Meta-SGD and Reptile 8. Gradient Agreement as an Optimization Objective 9. Recent Advancements and Next Steps 10. Assessments 11. Other Books You May Enjoy

Learning to learn in concept space


Now we'll see how to learn to learn in the concept space using deep meta learning. First, how do we perform meta learning? We sample a batch of related tasks and some k data points in each task and train our meta learner. Instead of just training using our vanilla meta learning technique, we can combine the power of deep learning with meta learning. So, when we sample a batch of tasks and some k data points in each task, we learn the representations of each of the k data points using deep neural networks and then we'll perform meta learning on those representations.

Our framework consists of three components:

  • Concept generator
  • Concept discriminator
  • Meta learner

The role of the concept generator is to extract the feature representations of each of the data points in our dataset, capturing its high-level concept, and the role of the concept discriminator is to recognize and classify the concepts generated by the concept generator, while the meta learner learns...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image