Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Meta Learning with Python

You're reading from   Hands-On Meta Learning with Python Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789534207
Length 226 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to Meta Learning 2. Face and Audio Recognition Using Siamese Networks FREE CHAPTER 3. Prototypical Networks and Their Variants 4. Relation and Matching Networks Using TensorFlow 5. Memory-Augmented Neural Networks 6. MAML and Its Variants 7. Meta-SGD and Reptile 8. Gradient Agreement as an Optimization Objective 9. Recent Advancements and Next Steps 10. Assessments 11. Other Books You May Enjoy

CAML


We have seen how MAML finds the optimal initial parameter of a model so that it can easily be adaptable to a new task with fewer gradient steps. Now, we will see an interesting variant of MAML called CAML. The idea of CAML is very simple, same as MAML; it also tries to find the better initial parameter. We learned how MAML uses two loops; on the inner loop, MAML learns the parameter specific to the task and tries to minimize the loss using gradient descent and, on the outer loop, it updates the model parameter to reduce the expected loss across several tasks so that we can use the updated model parameter as better initializations for related tasks.

In CAML, we perform a very small tweak to the MAML algorithm. Here, instead of using a single model parameter, we split our model parameter into two:

  • Context parameter: It is task-specific parameter updated on the inner loop. It is denoted by∅ and it is specific to each task and represents the embeddings of an individual task.
  • Shared parameter...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image