Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Image Processing with Python

You're reading from   Hands-On Image Processing with Python Expert techniques for advanced image analysis and effective interpretation of image data

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789343731
Length 492 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sandipan Dey Sandipan Dey
Author Profile Icon Sandipan Dey
Sandipan Dey
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Preface
1. Getting Started with Image Processing 2. Sampling, Fourier Transform, and Convolution FREE CHAPTER 3. Convolution and Frequency Domain Filtering 4. Image Enhancement 5. Image Enhancement Using Derivatives 6. Morphological Image Processing 7. Extracting Image Features and Descriptors 8. Image Segmentation 9. Classical Machine Learning Methods in Image Processing 10. Deep Learning in Image Processing - Image Classification 11. Deep Learning in Image Processing - Object Detection, and more 12. Additional Problems in Image Processing 1. Other Books You May Enjoy Index

CNNs


CNNs are deep neural networks for which the primarily used input is images. CNNs learn the filters (features) that are hand-engineered in traditional algorithms. This independence from prior knowledge and human effort in feature design is a major advantage. They also reduce the number of parameters to be learned with their shared-weights architecture and possess translation invariance characteristics. In the next subsection, we'll discuss the general architecture of a CNN and how it works.

Conv or pooling or FC layers – CNN architecture and how it works

The next screenshot shows the typical architecture of a CNN. It consists of one or more convolutional layer, followed by a nonlinear ReLU activation layer, a pooling layer, and, finally, one (or more) fully connected (FC) layer, followed by an FC softmax layer, for example, in the case of a CNN designed to solve an image classification problem.

There can be multiple convolution ReLU pooling sequences of layers in the network, making the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime