Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with R

You're reading from   Hands-On Ensemble Learning with R A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788624145
Length 376 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Ensemble Techniques FREE CHAPTER 2. Bootstrapping 3. Bagging 4. Random Forests 5. The Bare Bones Boosting Algorithms 6. Boosting Refinements 7. The General Ensemble Technique 8. Ensemble Diagnostics 9. Ensembling Regression Models 10. Ensembling Survival Models 11. Ensembling Time Series Models 12. What's Next?
A. Bibliography Index

Bagging

Bagging stands for Boostap AGGregatING. This was invented by Breiman (1994). Bagging is an example of an homogeneous ensemble and this is because the base learning algorithm remains as the classification tree. Here, each bootstrap tree will be a base learner. This also means that when we bootstrapped the linear regression model in Chapter 2, Bootstrapping, we actually performed an ensemble there. A few remarks with regards to combining the results of multiple trees is in order here.

Ensemble methods combine the outputs from multiple models, also known as base learners, and produce a single result. A benefit of this approach is that if each of these base learners possesses a desired property, then the combined result will have increased stability. If a certain base learner is over-trained in a specific region of the covariate space, the other base learner will nullify such an undesired prediction. It is the increased stability that is expected from the ensemble, and bagging many...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime