Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Computer Vision with TensorFlow 2

You're reading from   Hands-On Computer Vision with TensorFlow 2 Leverage deep learning to create powerful image processing apps with TensorFlow 2.0 and Keras

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781788830645
Length 372 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Eliot Andres Eliot Andres
Author Profile Icon Eliot Andres
Eliot Andres
Benjamin Planche Benjamin Planche
Author Profile Icon Benjamin Planche
Benjamin Planche
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: TensorFlow 2 and Deep Learning Applied to Computer Vision FREE CHAPTER
2. Computer Vision and Neural Networks 3. TensorFlow Basics and Training a Model 4. Modern Neural Networks 5. Section 2: State-of-the-Art Solutions for Classic Recognition Problems
6. Influential Classification Tools 7. Object Detection Models 8. Enhancing and Segmenting Images 9. Section 3: Advanced Concepts and New Frontiers of Computer Vision
10. Training on Complex and Scarce Datasets 11. Video and Recurrent Neural Networks 12. Optimizing Models and Deploying on Mobile Devices 13. Migrating from TensorFlow 1 to TensorFlow 2 14. Assessments 15. Other Books You May Enjoy

Training considerations – underfitting and overfitting

We invite you to play around with the framework we just implemented, trying different hyperparameters (layer sizes, learning rate, batch size, and so on). Choosing the proper topography (as well as other hyperparameters) can require lots of tweaking and testing. While the sizes of the input and output layers are conditioned by the use case (for example, for classification, the input size would be the number of pixel values in the images, and the output size would be the number of classes to predict from), the hidden layers should be carefully engineered.

For instance, if the network has too few layers, or the layers are too small, the accuracy may stagnate. This means the network is underfitting, that is, it does not have enough parameters for the complexity of the task. In this case, the only solution is to adopt a new architecture that is more suited to the application.

On the other hand, if the network is too complex...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime