Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Hands-On Artificial Intelligence for IoT
Hands-On Artificial Intelligence for IoT

Hands-On Artificial Intelligence for IoT: Expert machine learning and deep learning techniques for developing smarter IoT systems , Second Edition

eBook
$26.99 $38.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Artificial Intelligence for IoT

Data Access and Distributed Processing for IoT

Data is everywhere: images, speech, text, weather information, the speed of your car, your last EMI, changing stock prices. With the integration of Internet of Things (IoT) systems, the amount of data produced has increased many-fold; an example is sensor readings, which could be taken for room temperature, soil alkalinity, and more. This data is stored and made available in various formats. In this chapter, we will learn how to read, save, and process data in some popular formats. Specifically, you will do the following:

  • Access data in TXT format
  • Read and write csv-formatted data via the CSV, pandas, and NumPy modules
  • Access JSON data using JSON and pandas
  • Learn to work with the HDF5 format using PyTables, pandas, and h5py
  • Handle SQL databases using SQLite and MySQL
  • Handle NoSQL using MongoDB
  • Work with Hadoop's Distributed...

TXT format

One of the simplest and common formats for storing data is the TXT format; many IoT sensors log sensor readings with different timestamps in the simple .txt file format. Python provides built-in functions for creating, reading, and writing into TXT files.

We can access TXT files in Python itself without using any module; the data, in this case, is of the string type, and you will need to transform it to other types to use it. Alternatively, we can use NumPy or pandas.

Using TXT files in Python

Python has built-in functions that read and write into TXT files. The complete functionality is provided using four sets of functions: open(), read(), write(), and close(). As the names suggest, they are used to open a...

CSV format

Comma-separated value (CSV) files are the most popular formats for storing tabular data generated by IoT systems. In a .csv file, the values of the records are stored in plain-text rows, with each row containing the values of the fields separated by a separator. The separator is a comma by default but can be configured to be any other character. In this section, we will learn how to use data from CSV files with Python's csv, numpy, and pandas modules. We will use the household_power_consumption data file. The file can be downloaded from the following GitHub link: https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv. To access the data files, we define the following variables:

data_folder = '../../data/household_power_consumption' 
data_file = 'household_power_consumption.csv'

Generally, to quickly read the data from...

XLSX format

Excel, a component of the Microsoft Office pack, is one of the popular formats in which data is stored and visualized. Since 2010, Office has supported the .xlsx format. We can read XLSX files using the OpenPyXl and pandas functions.

Using OpenPyXl for XLSX files

OpenPyXl is a Python library for reading and writing Excel files. It is an open source project. A new workbook is created using the following command:

wb = Workbook()

We can access the currently active sheet by using the following command:

ws = wb.active()

To change the sheet name, use the title command:

ws.title = "Demo Name"

A single row can be added to the sheet using the append method:

ws.append()

A new sheet can be created using the create_sheet...

Working with the JSON format

JavaScript Object Notation (JSON) is another popular data format in IoT systems. In this section, we will learn how to read JSON data with Python's JSON, NumPy, and pandas packages.

For this section, we will use the zips.json file, which contains US ZIP codes with city codes, geolocation details, and state codes. The file has JSON objects recorded in the following format:

{ "_id" : "01001", "city" : "AGAWAM", "loc" : [ -72.622739, 42.070206 ], "pop" : 15338, "state" : "MA" }

Using JSON files with the JSON module

To load and decode JSON data, use the json.load() or json.loads() functions. As an example, the following...

HDF5 format

Hierarchical Data Format (HDF) is a specification put together by the HDF Group, a consortium of academic and industry organizations (https://support.hdfgroup.org/HDF5/). In HDF5 files, data is organized into groups and datasets. A group is a collection of groups or datasets. A dataset is a multidimensional homogeneous array.

In Python, PyTables and h5py are two major libraries for handling HDF5 files. Both these libraries require HDF5 to be installed. For the parallel version of HDF5, a version of MPI is also required to be installed. Installation of HDF5 and MPI is beyond the scope of this book. Installation instructions for parallel HDF5 can be found at the following link: https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel.

Using...

SQL data

Most databases are organized using relational models. A relational database consists of one or more related tables of information, and the relationship between information in different tables is described using keys. Conventionally, these databases are managed using the Database Management System (DBMS), software which interacts with end users, different applications, and the database itself to capture and analyze data. Commercially available DBMSes use Structured Query Language (SQL) to access and manipulate databases. We can also use Python to access relational databases. In this section, we will explore SQLite and MySQL, two very popular database engines that work with Python.

The SQLite database engine

According...

NoSQL data

The Not Only Structured Query Language (NoSQL) database is not a relational database; instead, data can be stored in key-value, JSON, document, columnar, or graph formats. They are frequently used in big data and real-time applications. We will learn here how to access NoSQL data using MongoDB, and we assume you have the MongoDB server configured properly and on:

  1. We will need to establish a connection with the Mongo daemon using the MongoClient object. The following code establishes the connection to the default host, localhost , and port (27017). And it gives us access to the database:
from pymongo import MongoClient
client = MongoClient()
db = client.test
  1. In this example, we try to load the cancer dataset available in scikit-learn to the Mongo database. So, we first get the breast cancer dataset and convert it to a pandas DataFrame:
from sklearn.datasets import...

TXT format


One of the simplest and common formats for storing data is the TXT format; many IoT sensors log sensor readings with different timestamps in the simple .txt file format. Python provides built-in functions for creating, reading, and writing into TXT files. 

 We can access TXT files in Python itself without using any module; the data, in this case, is of the string type, and you will need to transform it to other types to use it. Alternatively, we can use NumPy or pandas.

 

Using TXT files in Python

Python has built-in functions that read and write into TXT files. The complete functionality is provided using four sets of functions: open(), read(), write(), and close(). As the names suggest, they are used to open a file, read from a file, write into a file, and finally close it. If you are dealing with string data (text), this is the best choice. In this section, we will use Shakespeare plays in TXT form; the file can be downloaded from the MIT sitehttps://ocw.mit.edu/ans7870/6/6.006...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Leverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT data
  • Process IoT data and predict outcomes in real time to build smart IoT models
  • Cover practical case studies on industrial IoT, smart cities, and home automation

Description

There are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter. This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models. By the end of this book, you will be able to build smart AI-powered IoT apps with confidence.

Who is this book for?

If you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.

What you will learn

  • Apply different AI techniques including machine learning and deep learning using TensorFlow and Keras
  • Access and process data from various distributed sources
  • Perform supervised and unsupervised machine learning for IoT data
  • Implement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platforms
  • Forecast time-series data using deep learning methods
  • Implementing AI from case studies in Personal IoT, Industrial IoT, and Smart Cities
  • Gain unique insights from data obtained from wearable devices and smart devices

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jan 31, 2019
Length: 390 pages
Edition : 2nd
Language : English
ISBN-13 : 9781788832762
Category :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning

Product Details

Publication date : Jan 31, 2019
Length: 390 pages
Edition : 2nd
Language : English
ISBN-13 : 9781788832762
Category :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 148.97
Hands-On IoT Solutions with Blockchain
$38.99
Hands-On Artificial Intelligence for Beginners
$54.99
Hands-On Artificial Intelligence for IoT
$54.99
Total $ 148.97 Stars icon

Table of Contents

13 Chapters
Principles and Foundations of IoT and AI Chevron down icon Chevron up icon
Data Access and Distributed Processing for IoT Chevron down icon Chevron up icon
Machine Learning for IoT Chevron down icon Chevron up icon
Deep Learning for IoT Chevron down icon Chevron up icon
Genetic Algorithms for IoT Chevron down icon Chevron up icon
Reinforcement Learning for IoT Chevron down icon Chevron up icon
Generative Models for IoT Chevron down icon Chevron up icon
Distributed AI for IoT Chevron down icon Chevron up icon
Personal and Home IoT Chevron down icon Chevron up icon
AI for the Industrial IoT Chevron down icon Chevron up icon
AI for Smart Cities IoT Chevron down icon Chevron up icon
Combining It All Together Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(4 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
NSingh Feb 19, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Must read book on Artificial Intelligence, machine learning and deep learning for IoT. It also cover Genetic Algorithms, Reinforcement learning and Generative Models for IoT.
Amazon Verified review Amazon
A. Jaokar Mar 02, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book was inspired by my work at Oxford UniversityI have known Amita from her previous book (co-authored with Antonio Gulli) but I have not contributed to this bookBased on my experience in teaching AI for IoT, it is not an easy subject due to its vast scope.This book first covers the Principles and then lays the groundwork in terms of tools(ex keras), datasets(ex air quality) and File formats (ex JSON)The book then cover Machine Learning in depth(linear regression, Logistic regression, SVMs, Naive Bayes, Decision trees, Ensemble learning ) followed by Deep Learning(Multi layer perceptron, CNN, RNN, Autoencoders) and then covers more complex algorithms(Genetic Algorithms, Reinforcement Learning and GANs). This is followed by Distributed AI(Spark) followed by application areas (Smart homes, Smart cities and Industrial IoT)The book then combines these ideas together in the last sectionOverall, it is a comprehensive and a hand-on approachWhat could be improved? More coverage on the Cloud and the Edge technologiesWhat’s the best feature? The hands-on (coding based) approachOverall, its very much recommended
Amazon Verified review Amazon
RajA Apr 12, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book covers wide spectrum of AI topics from machine learning to deep learning, genetics algorithm, reinforcement learning, H2O etc to build smart AI models. Overall recommending and must read book.
Amazon Verified review Amazon
Client d'Amazon Oct 06, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
très complet!
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.