Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Engineering MLOps

You're reading from   Engineering MLOps Rapidly build, test, and manage production-ready machine learning life cycles at scale

Arrow left icon
Product type Paperback
Published in Apr 2021
Publisher Packt
ISBN-13 9781800562882
Length 370 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Emmanuel Raj Emmanuel Raj
Author Profile Icon Emmanuel Raj
Emmanuel Raj
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Framework for Building Machine Learning Models
2. Chapter 1: Fundamentals of an MLOps Workflow FREE CHAPTER 3. Chapter 2: Characterizing Your Machine Learning Problem 4. Chapter 3: Code Meets Data 5. Chapter 4: Machine Learning Pipelines 6. Chapter 5: Model Evaluation and Packaging 7. Section 2: Deploying Machine Learning Models at Scale
8. Chapter 6: Key Principles for Deploying Your ML System 9. Chapter 7: Building Robust CI/CD Pipelines 10. Chapter 8: APIs and Microservice Management 11. Chapter 9: Testing and Securing Your ML Solution 12. Chapter 10: Essentials of Production Release 13. Section 3: Monitoring Machine Learning Models in Production
14. Chapter 11: Key Principles for Monitoring Your ML System 15. Chapter 12: Model Serving and Monitoring 16. Chapter 13: Governing the ML System for Continual Learning 17. Other Books You May Enjoy

Understanding the need for continual learning

When we got started in Chapter 1, Fundamentals of MLOps Workflow, we learned about the reasons AI adoption is stunted in organizations. One of the reasons was the lack of continual learning in ML systems. Yes, continual learning! We will address this challenge in this chapter and make sure we learn how to enable this capability by the end of this chapter. Now, let's look into continual learning.

Continual learning

Continual learning is built on the principle of continuously learning from data, human experts, and the external environment. Continual learning enables lifelong learning, with adaptation at its core. It enables ML systems to become intelligent over time to adapt to the task at hand. It does this by monitoring and learning from the environment and the human experts assisting the ML system. Continual learning can be a powerful add-on to an ML system. It can allow you to realize the maximum potential of an AI system...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image