Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Engineering Data Mesh in Azure Cloud

You're reading from   Engineering Data Mesh in Azure Cloud Implement data mesh using Microsoft Azure's Cloud Adoption Framework

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781805120780
Length 314 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Aniruddha Deswandikar Aniruddha Deswandikar
Author Profile Icon Aniruddha Deswandikar
Aniruddha Deswandikar
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1: Rolling Out the Data Mesh in the Azure Cloud FREE CHAPTER
2. Chapter 1: Introducing Data Meshes 3. Chapter 2: Building a Data Mesh Strategy 4. Chapter 3: Deploying a Data Mesh Using the Azure Cloud-Scale Analytics Framework 5. Chapter 4: Building a Data Mesh Governance Framework Using Microsoft Azure Services 6. Chapter 5: Security Architecture for Data Meshes 7. Chapter 6: Automating Deployment through Azure Resource Manager and Azure DevOps 8. Chapter 7: Building a Self-Service Portal for Common Data Mesh Operations 9. Part 2: Practical Challenges of Implementing a Data Mesh
10. Chapter 8: How to Design, Build, and Manage Data Contracts 11. Chapter 9: Data Quality Management 12. Chapter 10: Master Data Management 13. Chapter 11: Monitoring and Data Observability 14. Chapter 12: Monitoring Data Mesh Costs and Building a Cross-Charging Model 15. Chapter 13: Understanding Data-Sharing Topologies in a Data Mesh 16. Part 3: Popular Data Product Architectures
17. Chapter 14: Advanced Analytics Using Azure Machine Learning, Databricks, and the Lakehouse Architecture 18. Chapter 15: Big Data Analytics Using Azure Synapse Analytics 19. Chapter 16: Event-Driven Analytics Using Azure Event Hubs, Azure Stream Analytics, and Azure Machine Learning 20. Chapter 17: AI Using Azure Cognitive Services and Azure OpenAI 21. Index 22. Other Books You May Enjoy

Understanding data-sharing challenges in a data mesh

A data mesh is an architecture that proposes decentralizing data ownership and centralizes governance of these decentralized data products or landing zones. While it provides agility and independence to the products and the product teams, it does raise multiple new challenges. In many previous chapters, we have discussed these challenges: deploying and managing multiple landing zones, managing data access across different data products, discovering decentralized data, and many other such challenges. We found solutions to make them easier and more manageable.

When we propose a data mesh architecture to companies, the very first thought that comes to their mind is, how will data be shared across this mesh? Will each data product pull data from across the mesh? Will that not create duplicate copies of data across the mesh? What about security across different access points (APs)?

To answer these questions and many more, let us...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime