Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Developing Kaggle Notebooks

You're reading from   Developing Kaggle Notebooks Pave your way to becoming a Kaggle Notebooks Grandmaster

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781805128519
Length 370 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Gabriel Preda Gabriel Preda
Author Profile Icon Gabriel Preda
Gabriel Preda
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introducing Kaggle and Its Basic Functions FREE CHAPTER 2. Getting Ready for Your Kaggle Environment 3. Starting Our Travel – Surviving the Titanic Disaster 4. Take a Break and Have a Beer or Coffee in London 5. Get Back to Work and Optimize Microloans for Developing Countries 6. Can You Predict Bee Subspecies? 7. Text Analysis Is All You Need 8. Analyzing Acoustic Signals to Predict the Next Simulated Earthquake 9. Can You Find Out Which Movie Is a Deepfake? 10. Unleash the Power of Generative AI with Kaggle Models 11. Closing Our Journey: How to Stay Relevant and on Top 12. Other Books You May Enjoy
13. Index

Metadata exploration

We start by importing the utility functions and classes from the utility scripts for data quality, plot utils, video utils, and face object detection. The following code block shows what we import from the utility scripts:

from data_quality_stats import missing_data, unique_values, most_frequent_values
from plot_style_utils import set_color_map, plot_count
from video_utils import display_image_from_video, display_images_from_video_list, play_video
from face_object_detection import CascadeObjectDetector, FaceObjectDetector
from face_detection_mtcnn import MTCNNFaceDetector

After we load the data files (the train and test samples), we are ready to start our analysis. The following code block checks the types of files in TRAIN_SAMPLE_FOLDER:

train_list = list(os.listdir(os.path.join(DATA_FOLDER, TRAIN_SAMPLE_FOLDER)))
ext_dict = []
for file in train_list:
    file_ext = file.split('.')[1]
    if (file_ext not in ext_dict):
        ext_dict...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime