Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Theano

You're reading from   Deep Learning with Theano Perform large-scale numerical and scientific computations efficiently

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786465825
Length 300 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Christopher Bourez Christopher Bourez
Author Profile Icon Christopher Bourez
Christopher Bourez
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Theano Basics FREE CHAPTER 2. Classifying Handwritten Digits with a Feedforward Network 3. Encoding Word into Vector 4. Generating Text with a Recurrent Neural Net 5. Analyzing Sentiment with a Bidirectional LSTM 6. Locating with Spatial Transformer Networks 7. Classifying Images with Residual Networks 8. Translating and Explaining with Encoding – decoding Networks 9. Selecting Relevant Inputs or Memories with the Mechanism of Attention 10. Predicting Times Sequences with Advanced RNN 11. Learning from the Environment with Reinforcement 12. Learning Features with Unsupervised Generative Networks 13. Extending Deep Learning with Theano Index

Memory and variables

It is good practice to always cast float arrays to the theano.config.floatX type:

  • Either at the array creation with numpy.array(array, dtype=theano.config.floatX)
  • Or by casting the array as array.as_type(theano.config.floatX) so that when compiling on the GPU, the correct type is used

For example, let's transfer the data manually to the GPU (for which the default context is None), and for that purpose, we need to use float32 values:

>>> theano.config.floatX = 'float32'

>>> a = T.matrix()

>>> b = a.transfer(None)

>>> b.eval({a:numpy.ones((2,2)).astype(theano.config.floatX)})
gpuarray.array([[ 1.  1.]
 [ 1.  1.]], dtype=float32)

 >>> theano.printing.debugprint(b)
GpuFromHost<None> [id A] ''   
 |<TensorType(float32, matrix)> [id B]

The transfer(device) functions, such as transfer('cpu'), enable us to move the data from one device to another one. It is particularly useful when parts of the graph have to be executed on different devices. Otherwise, Theano adds the transfer functions automatically to the GPU in the optimization phase:

>>> a = T.matrix('a')

>>> b = a ** 2

>>> sq = theano.function([a],b)

>>> theano.printing.debugprint(sq)
HostFromGpu(gpuarray) [id A] ''   2
 |GpuElemwise{Sqr}[(0, 0)]<gpuarray> [id B] ''   1
   |GpuFromHost<None> [id C] ''   0
     |a [id D]

Using the transfer function explicitly, Theano removes the transfer back to CPU. Leaving the output tensor on the GPU saves a costly transfer:

>>> b = b.transfer(None)

>>> sq = theano.function([a],b)

>>> theano.printing.debugprint(sq)
GpuElemwise{Sqr}[(0, 0)]<gpuarray> [id A] ''   1
 |GpuFromHost<None> [id B] ''   0
   |a [id C]

The default context for the CPU is cpu:

>>> b = a.transfer('cpu')

>>> theano.printing.debugprint(b)
<TensorType(float32, matrix)> [id A]

A hybrid concept between numerical values and symbolic variables is the shared variables. They can also lead to better performance on the GPU by avoiding transfers. Initializing a shared variable with the scalar zero:

>>> state = shared(0)

>>> state

<TensorType(int64, scalar)>

>>> state.get_value()
array(0)

>>> state.set_value(1)

>>> state.get_value()
array(1)

Shared values are designed to be shared between functions. They can also be seen as an internal state. They can be used indifferently from the GPU or the CPU compile code. By default, shared variables are created on the default device (here, cuda), except for scalar integer values (as is the case in the previous example).

It is possible to specify another context, such as cpu. In the case of multiple GPU instances, you'll define your contexts in the Python command line, and decide on which context to create the shared variables:

PATH=/usr/local/cuda-8.0-cudnn-5.1/bin:$PATH THEANO_FLAGS="contexts=dev0->cuda0;dev1->cuda1,floatX=float32,gpuarray.preallocate=0.8" python
>>> from theano import theano
Using cuDNN version 5110 on context dev0
Preallocating 9151/11439 Mb (0.800000) on cuda0
Mapped name dev0 to device cuda0: Tesla K80 (0000:83:00.0)
Using cuDNN version 5110 on context dev1
Preallocating 9151/11439 Mb (0.800000) on cuda1
Mapped name dev1 to device cuda1: Tesla K80 (0000:84:00.0)

>>> import theano.tensor as T

>>> import numpy

>>> theano.shared(numpy.random.random((1024, 1024)).astype('float32'),target='dev1')
<GpuArrayType<dev1>(float32, (False, False))>
You have been reading a chapter from
Deep Learning with Theano
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781786465825
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime