One of the major difficulties with image classification models is the lack of labeled data. It is difficult to assemble a labeled dataset of sufficient size to train a model well; it is an extremely time consuming and laborious task. This is not such a problem for MNIST, since the images are relatively simple. They are greyscale and largely consist only of target features, there are no distracting background features, and the images are all aligned the same way and are of the same scale. A small dataset of 60,000 images is quite sufficient to train a model well. It is rare to find such a well-organized and consistent dataset in the problems we encounter in real life. Images are often of variable quality, and the target features can be obscured or distorted. They can also be of widely variable scales and rotations. The solution is to use a model architecture that...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine