Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Keras

You're reading from   Deep Learning with Keras Implementing deep learning models and neural networks with the power of Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787128422
Length 318 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Neural Networks Foundations FREE CHAPTER 2. Keras Installation and API 3. Deep Learning with ConvNets 4. Generative Adversarial Networks and WaveNet 5. Word Embeddings 6. Recurrent Neural Network — RNN 7. Additional Deep Learning Models 8. AI Game Playing 9. Conclusion

Towards a deep learning approach

While playing with handwritten digit recognition, we came to the conclusion that the closer we get to the accuracy of 99%, the more difficult it is to improve. If we want to have more improvements, we definitely need a new idea. What are we missing? Think about it.

The fundamental intuition is that, so far, we lost all the information related to the local spatiality of the images. In particular, this piece of code transforms the bitmap, representing each written digit into a flat vector where the spatial locality is gone:

#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)

However, this is not how our brain works. Remember that our vision is based on multiple cortex levels, each one recognizing more and more structured information, still preserving the locality. First we see single pixels, then from that, we recognize simple geometric forms and then more and more sophisticated elements such as objects, faces, human bodies, animals and so on.

In Chapter 3, Deep Learning with ConvNets, we will see that a particular type of deep learning network known as convolutional neural network (CNN) has been developed by taking into account both the idea of preserving the spatial locality in images (and, more generally, in any type of information) and the idea of learning via progressive levels of abstraction: with one layer, you can only learn simple patterns; with more than one layer, you can learn multiple patterns. Before discussing CNN, we need to discuss some aspects of Keras architecture and have a practical introduction to a few additional machine learning concepts. This will be the topic of the next chapters.

You have been reading a chapter from
Deep Learning with Keras
Published in: Apr 2017
Publisher: Packt
ISBN-13: 9781787128422
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime