Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with fastai Cookbook

You're reading from   Deep Learning with fastai Cookbook Leverage the easy-to-use fastai framework to unlock the power of deep learning

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781800208100
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Mark Ryan Mark Ryan
Author Profile Icon Mark Ryan
Mark Ryan
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Chapter 1: Getting Started with fastai 2. Chapter 2: Exploring and Cleaning Up Data with fastai FREE CHAPTER 3. Chapter 3: Training Models with Tabular Data 4. Chapter 4: Training Models with Text Data 5. Chapter 5: Training Recommender Systems 6. Chapter 6: Training Models with Visual Data 7. Chapter 7: Deployment and Model Maintenance 8. Chapter 8: Extended fastai and Deployment Features 9. Other Books You May Enjoy

Examining text datasets with fastai

In the previous section, we looked at how a curated tabular dataset could be ingested. In this section, we are going to dig into a text dataset from the curated list.

Getting ready

Ensure you have followed the steps in Chapter 1, Getting Started with fastai, to get a fastai environment set up. Confirm that you can open the examining_text_datasets.ipynb notebook in the ch2 directory of your repository.

I am grateful for the opportunity to use the WIKITEXT_TINY dataset (https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) featured in this section.

Dataset citation

Stephen Merity, Caiming Xiong, James Bradbury, Richard Socher. (2016). Pointer Sentinel Mixture Models (https://arxiv.org/pdf/1609.07843.pdf).

How to do it…

In this section, you will be running through the examining_text_datasets.ipynb notebook to examine the WIKITEXT_TINY dataset. As its name suggests, this is a small set of text that's been gleaned from good and featured Wikipedia articles.

Once you have the notebook open in your fastai environment, complete the following steps:

  1. Run the first two cells to import the necessary libraries and set up the notebook for fastai.
  2. Run the following cell to copy the dataset into your filesystem (if it's not already there) and to define the path for the dataset:
    path = untar_data(URLs.WIKITEXT_TINY)
  3. Run the following cell to get the output of path.ls() so that you can examine the directory structure of the dataset:
    Figure 2.11 – Output of path.ls()

    Figure 2.11 – Output of path.ls()

  4. There are two CSV files that make up this dataset. Let's ingest each of them into a pandas DataFrame, starting with train.csv:
    df_train = pd.read_csv(path/'train.csv')
  5. When you use head() to check the DataFrame, you'll notice that something's wrong – the CSV file has no header with column names, but by default, read_csv assumes the first row is the header, so the first row gets misinterpreted as a header. As shown in the following screenshot, the first row of output is in bold, which indicates that the first row is being interpreted as a header, even though it contains a regular data row:
    Figure 2.12 – First record in df_train

    Figure 2.12 – First record in df_train

  6. To fix this problem, rerun the read_csv function, but this time with the header=None parameter, to specify that the CSV file doesn't have a header:
    df_train = pd.read_csv(path/'train.csv',header=None)
  7. Check head() again to confirm that the problem has been resolved:
    Figure 2.13 – Revising the first record in df_train

    Figure 2.13 – Revising the first record in df_train

  8. Ingest test.csv into a DataFrame using the header=None parameter:
    df_test = pd.read_csv(path/'test.csv',header=None)
  9. We want to tokenize the dataset and transform it into a list of words. Since we want a common set of tokens for the entire dataset, we will begin by combining the test and train DataFrames:
    df_combined = pd.concat([df_train,df_test])
  10. Confirm the shape of the train, test, and combined dataframes – the number of rows in the combined DataFrame should be the sum of the number of rows in the train and test DataFrames:
    print("df_train: ",df_train.shape)
    print("df_test: ",df_test.shape)
    print("df_combined: ",df_combined.shape)
  11. Now, we're ready to tokenize the DataFrame. The tokenize_df() function takes the list of columns containing the text we want to tokenize as a parameter. Since the columns of the DataFrame are not labeled, we need to refer to the column we want to tokenize using its position rather than its name:
    df_tok, count = tokenize_df(df_combined,[df_combined.columns[0]])
  12. Check the contents of the first few records of df_tok, which is the new DataFrame containing the tokenized contents of the combined DataFrame:
    Figure 2.14 – The first few records of df_tok

    Figure 2.14 – The first few records of df_tok

  13. Check the count for a few sample words to ensure they are roughly what you expected. Pick a very common word, a moderately common word, and a rare word:
    print("very common word (count['the']):", count['the'])
    print("moderately common word (count['prepared']):", count['prepared'])
    print("rare word (count['gaga']):", count['gaga'])

Congratulations! You have successfully ingested, explored, and tokenized a curated text dataset.

How it works…

The dataset that you explored in this section, WIKITEXT_TINY, is one of the datasets you would have seen in the source for URLs in the Getting the complete set of oven-ready fastai datasets section. Here, you can see that WIKITEXT_TINY is in the NLP datasets section of the source for URLs:

Figure 2.15 – WIKITEXT_TINY in the NLP datasets list in the source for URLs

Figure 2.15 – WIKITEXT_TINY in the NLP datasets list in the source for URLs

You have been reading a chapter from
Deep Learning with fastai Cookbook
Published in: Sep 2021
Publisher: Packt
ISBN-13: 9781800208100
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime