Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Marketing Analytics

You're reading from   Data Science for Marketing Analytics Achieve your marketing goals with the data analytics power of Python

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher
ISBN-13 9781789959413
Length 420 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Tommy Blanchard Tommy Blanchard
Author Profile Icon Tommy Blanchard
Tommy Blanchard
Debasish Behera Debasish Behera
Author Profile Icon Debasish Behera
Debasish Behera
Pranshu Bhatnagar Pranshu Bhatnagar
Author Profile Icon Pranshu Bhatnagar
Pranshu Bhatnagar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Data Science for Marketing Analytics
Preface
1. Data Preparation and Cleaning 2. Data Exploration and Visualization FREE CHAPTER 3. Unsupervised Learning: Customer Segmentation 4. Choosing the Best Segmentation Approach 5. Predicting Customer Revenue Using Linear Regression 6. Other Regression Techniques and Tools for Evaluation 7. Supervised Learning: Predicting Customer Churn 8. Fine-Tuning Classification Algorithms 9. Modeling Customer Choice Appendix

Evaluating the Accuracy of a Regression Model


In order to evaluate regression models, we first need to define some metrics. The common metrics used to evaluate regression models rely on the concepts of residuals and errors, which are quantifications of how much a model mispredicts a particular data point. In the following sections, we will first learn about residuals and errors. We will then learn about two evaluation metrics, mean absolute error (MAE) and root mean squared error (RMSE), and how they are used to evaluate regression models.

Residuals and Errors

An important concept in understanding how to evaluate regression models is the residual. The residual refers to the difference between the value predicted by the model and the true value for a data point. It can be thought of as by how much your model missed a particular value. The following diagram illustrates this:

Figure 6.1: Estimating the residual

The residual is taken to be an estimate of the error of a model, where the error is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime