Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Automated Machine Learning

You're reading from   Automated Machine Learning Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781800567689
Length 312 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Adnan Masood Adnan Masood
Author Profile Icon Adnan Masood
Adnan Masood
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to Automated Machine Learning
2. Chapter 1: A Lap around Automated Machine Learning FREE CHAPTER 3. Chapter 2: Automated Machine Learning, Algorithms, and Techniques 4. Chapter 3: Automated Machine Learning with Open Source Tools and Libraries 5. Section 2: AutoML with Cloud Platforms
6. Chapter 4: Getting Started with Azure Machine Learning 7. Chapter 5: Automated Machine Learning with Microsoft Azure 8. Chapter 6: Machine Learning with AWS 9. Chapter 7: Doing Automated Machine Learning with Amazon SageMaker Autopilot 10. Chapter 8: Machine Learning with Google Cloud Platform 11. Chapter 9: Automated Machine Learning with GCP 12. Section 3: Applied Automated Machine Learning
13. Chapter 10: AutoML in the Enterprise 14. Other Books You May Enjoy

AWS JumpStart

In Dec 2020, Amazon announced SageMaker JumpStart as a capability to access pre-built model repositories also called model zoos to accelerate model development. Integrated as apart of Amazon SageMaker, JumpStart provides pre-built templates for predictive maintenance, computer vision, autonomous driving, fraud detection, credit risk prediction, OCR for extracting and analyze data from documents, churn prediction, and personalized recommendations.

JumpStart provides an excellent starting point for developers to use these pre-existing templates to JumpStart (pun intended) their development. These accelerator and starter kits are available on GitHub here. https://github.com/awslabs/ and provide recipes and best practices to use Amazon SageMaker model development and deployment mechanisms.

Further details on using AWS JumpStart can be found here. https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image