Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Applied Deep Learning with Python

You're reading from   Applied Deep Learning with Python Use scikit-learn, TensorFlow, and Keras to create intelligent systems and machine learning solutions

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher
ISBN-13 9781789804744
Length 334 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Alex Galea Alex Galea
Author Profile Icon Alex Galea
Alex Galea
Luis Capelo Luis Capelo
Author Profile Icon Luis Capelo
Luis Capelo
Arrow right icon
View More author details
Toc

Summary

In this chapter, we have seen how predictive models can be trained in Jupyter Notebooks.

To begin with, we talked about how to plan a machine learning strategy. We thought about how to design a plan that can lead to actionable business insights and stressed the importance of using the data to help set realistic business goals. We also explained machine learning terminologies such as supervised learning, unsupervised learning, classification, and regression.

Next, we discussed methods for preprocessing data using scikit-learn and pandas. This included lengthy discussions and examples of a surprisingly time-consuming part of machine learning: dealing with missing data.

In the latter half of the chapter, we trained predictive classification models for our binary problem, comparing how decision boundaries are drawn for various models such as the SVM, k-Nearest Neighbors, and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime