As a Hadoop administrator, one important activity that you need to do is to ensure that all of the resources are used in the most optimal manner inside the cluster. When I refer to a resource, I mean the CPU time, the memory allocated to jobs, the network bandwidth utilization, and storage space consumed. Administrators can achieve that by balancing workloads on the jobs that are running in the cluster environment. When a cluster is set up, it may run different types of jobs, requiring different levels of time- and complexity-based SLAs. Fortunately, Apache Hadoop provides a built-in scheduler for scheduling jobs to allow administrators to prioritize different jobs as per the SLAs defined. So, overall resources can be managed by resource scheduling. All schedulers used in Hadoop use job queues to line up the jobs for prioritization. Among all, the...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine