Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Advanced Deep Learning with Keras
Advanced Deep Learning with Keras

Advanced Deep Learning with Keras: Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Profile Icon Rowel Atienza
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5 (8 Ratings)
Paperback Oct 2018 368 pages 1st Edition
eBook
$24.99 $35.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Rowel Atienza
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5 (8 Ratings)
Paperback Oct 2018 368 pages 1st Edition
eBook
$24.99 $35.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$24.99 $35.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Advanced Deep Learning with Keras

Chapter 2. Deep Neural Networks

In this chapter, we'll be examining deep neural networks. These networks have shown excellent performance in terms of the accuracy of their classification on more challenging and advanced datasets like ImageNet, CIFAR10, and CIFAR100. For conciseness, we'll only be focusing on two networks, ResNet [2][4] and DenseNet [5]. While we will go into much more detail, it's important to take a minute to introduce these networks:

ResNet introduced the concept of residual learning which enabled it to build very deep networks by addressing the vanishing gradient problem in deep convolutional networks.

DenseNet improved the ResNet technique further by allowing every convolution to have direct access to inputs, and lower layer feature maps. It's also managed to keep the number of parameters low in deep networks by utilizing both the Bottleneck and Transition layers.

But why these two models, and not others? Well, since their...

Functional API

In the sequential model that we first introduced in Chapter 1, Introducing Advanced Deep Learning with Keras, a layer is stacked on top of another layer. Generally, the model will be accessed through its input and output layers. We also learned that there is no simple mechanism if we find ourselves wanting to add an auxiliary input at the middle of the network, or even to extract an auxiliary output before the last layer.

That model also had its downside, for example, it doesn't support graph-like models or models that behave like Python functions. In addition, it's also difficult to share layers between the two models. Such limitations are addressed by the functional API and are the reason why it's a vital tool for anyone wanting to work with deep learning models.

The Functional API is guided by the following two concepts:

  • A layer is an instance that accepts a tensor as an argument. The output of a layer is another tensor. To build a model, the...

Functional API


In the sequential model that we first introduced in Chapter 1, Introducing Advanced Deep Learning with Keras, a layer is stacked on top of another layer. Generally, the model will be accessed through its input and output layers. We also learned that there is no simple mechanism if we find ourselves wanting to add an auxiliary input at the middle of the network, or even to extract an auxiliary output before the last layer.

That model also had its downside, for example, it doesn't support graph-like models or models that behave like Python functions. In addition, it's also difficult to share layers between the two models. Such limitations are addressed by the functional API and are the reason why it's a vital tool for anyone wanting to work with deep learning models.

The Functional API is guided by the following two concepts:

  • A layer is an instance that accepts a tensor as an argument. The output of a layer is another tensor. To build a model, the layer instances are objects that...

Deep residual networks (ResNet)


One key advantage of deep networks is that they have a great ability to learn different levels of representations from both inputs and feature maps. In both classification, segmentation, detection and a number of other computer vision problems, learning different levels of features generally leads to better performance.

However, you'll find that it's not easy to train deep networks as a result of the gradient vanishes (or explodes) with depth in the shallow layers during backpropagation. Figure 2.2.1 illustrates the problem of vanishing gradient. The network parameters are updated by backpropagation from the output layer to all previous layers. Since backpropagation is based on the chain rule, there is a tendency for gradients to diminish as they reach the shallow layers. This is due to the multiplication of small numbers, especially for the small absolute value of errors and parameters.

The number of multiplication operations will be proportional to the depth...

ResNet v2


After the release of the second paper on ResNet [4], the original model presented in the previous section has been known as ResNet v1. The improved ResNet is commonly called ResNet v2. The improvement is mainly found in the arrangement of layers in the residual block as shown in following figure.

The prominent changes in ResNet v2 are:

  • The use of a stack of 1 × 1 - 3 × 3 - 1 × 1 BN-ReLU-Conv2D

  • Batch normalization and ReLU activation come before 2D convolution

Figure 2.3.1: A comparison of residual blocks between ResNet v1 and ResNet v2

ResNet v2 is also implemented in the same code as resnet-cifar10-2.2.1.py:

def resnet_v2(input_shape, depth, num_classes=10):
    if (depth - 2) % 9 != 0:
        raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])')
    # Start model definition.
    num_filters_in = 16
    num_res_blocks = int((depth - 2) / 9)

    inputs = Input(shape=input_shape)
    # v2 performs Conv2D with BN-ReLU on input 
    # before splitting into 2 paths
    x = resnet_layer...

Densely connected convolutional networks (DenseNet)


Figure 2.4.1: A 4-layer Dense block in DenseNet. The input to each layer is made of all the previous feature maps.

DenseNet attacks the problem of vanishing gradient using a different approach. Instead of using shortcut connections, all the previous feature maps will become the input of the next layer. The preceding figure, shows an example of a dense interconnection in one Dense block.

For simplicity, in this figure, we'll only show four layers. Notice that the input to layer l is the concatenation of all previous feature maps. If we designate the BN-ReLU-Conv2D as the operation H(x), then the output of layer l is:

(Equation 2.4.1)

Conv2D uses a kernel of size 3. The number of feature maps generated per layer is called the growth rate, k. Normally, k = 12, but k = 24 is also used in the paper, Densely Connected Convolutional Networks, Huang, and others, 2017 [5]. Therefore, if the number of feature maps

is

, then the total number...

Conclusion


In this chapter, we've presented Functional API as an advanced method for building complex deep neural network models using Keras. We also demonstrated how the Functional API could be used to build the multi-input-single-output Y-Network. This network, when compared to a single branch CNN network, archives better accuracy. For the rest of the book, we'll find the Functional API indispensable in building more complex and advanced models. For example, in the next chapter, the Functional API will enable us to build a modular encoder, decoder, and autoencoder.

We also spent a significant time exploring two important deep networks, ResNet and DenseNet. Both of these networks have been used not only in classification but also in other areas, such as segmentation, detection, tracking, generation, and visual/semantic understanding. We need to remember that it's more important that we understand the model design decisions in ResNet and DenseNet more closely than just following the original...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore the most advanced deep learning techniques that drive modern AI results
  • Implement deep neural networks, autoencoders, GANs, VAEs, and deep reinforcement learning
  • A wide study of GANs, including Improved GANs, Cross-Domain GANs, and Disentangled Representation GANs

Description

Recent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

Who is this book for?

Some fluency with Python is assumed. As an advanced book, you'll be familiar with some machine learning approaches, and some practical experience with DL will be helpful. Knowledge of Keras or TensorFlow 1.x is not required but would be helpful.

What you will learn

  • Cutting-edge techniques in human-like AI performance
  • Implement advanced deep learning models using Keras
  • The building blocks for advanced techniques - MLPs, CNNs, and RNNs
  • Deep neural networks – ResNet and DenseNet
  • Autoencoders and Variational Autoencoders (VAEs)
  • Generative Adversarial Networks (GANs) and creative AI techniques
  • Disentangled Representation GANs, and Cross-Domain GANs
  • Deep reinforcement learning methods and implementation
  • Produce industry-standard applications using OpenAI Gym
  • Deep Q-Learning and Policy Gradient Methods

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 31, 2018
Length: 368 pages
Edition : 1st
Language : English
ISBN-13 : 9781788629416
Category :
Languages :
Concepts :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Oct 31, 2018
Length: 368 pages
Edition : 1st
Language : English
ISBN-13 : 9781788629416
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 131.97
Keras Deep Learning Cookbook
$38.99
Python Deep Learning Projects
$48.99
Advanced Deep Learning with Keras
$43.99
Total $ 131.97 Stars icon

Table of Contents

12 Chapters
1. Introducing Advanced Deep Learning with Keras Chevron down icon Chevron up icon
2. Deep Neural Networks Chevron down icon Chevron up icon
3. Autoencoders Chevron down icon Chevron up icon
4. Generative Adversarial Networks (GANs) Chevron down icon Chevron up icon
5. Improved GANs Chevron down icon Chevron up icon
6. Disentangled Representation GANs Chevron down icon Chevron up icon
7. Cross-Domain GANs Chevron down icon Chevron up icon
8. Variational Autoencoders (VAEs) Chevron down icon Chevron up icon
9. Deep Reinforcement Learning Chevron down icon Chevron up icon
10. Policy Gradient Methods Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5
(8 Ratings)
5 star 87.5%
4 star 0%
3 star 0%
2 star 0%
1 star 12.5%
Filter icon Filter
Top Reviews

Filter reviews by




Seamless Blend Nov 23, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have been through more than a couple books on Artificial Intelligence and I find this to be the best. It tackles difficult topics in a clear and concise way that is easy for the reader to understand and follow. The code listings are straightforward. Whether you are a seasoned programmer or just start out, it has something to offer for everyone.
Amazon Verified review Amazon
Christian D. Poulin Jan 15, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
A unique book for practical applications in Deep Learning. As all too often, deep learning books have provided only a historical snapshot of basic practices. However, Dr. Atienza’s book embraces a more advanced goal of facilitating practical applications based on the latest capability. Thereby, fulfilling a critical knowledge gap for the community.Meanwhile, the author is a definitive research leader in the areas of GANs and Auto-encoders. As such, his survey of the current state of the art in these sub-areas of deep learning, is truly invaluable. For example, specific topics that I encountered for the first time reading this book include advanced methods of: Improved and Disentangled GANs. Finally, the book ends with a quite timely discussion of Policy Gradient methods. A current area of strong interest to both the ML research communities.Overall, this is a highly excellent book and a unique reference resource for building the applications of GANs, the current state of the art in autoencoders, and those methods of Reinforcement Learning (w/ policy methods). I recommend this book quite highly.
Amazon Verified review Amazon
Rhandley Cajote Feb 19, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book provides a good balance of discussions, theory, diagrams and practical code implementations in Keras in many aspects of deep learning. The kind of book that every practitioner in deep learning should have. The chapters on GAN and VAE have been well-explained.
Amazon Verified review Amazon
Isleguard Jul 03, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is a good blend of code, mathematics and explanations.
Amazon Verified review Amazon
Amazon Customer Jan 03, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Advanced Deep Learning with Keras covers a wide breadth of topics and serves as an intermediate entry point into more advanced deep learning models such as RNN's and GANs. The book provides a good mix of math, diagrams and practical code examples for each topic.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.