Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Unity 5.x Game AI Programming Cookbook

You're reading from   Unity 5.x Game AI Programming Cookbook Build and customize a wide range of powerful Unity AI systems with over 70 hands-on recipes and techniques

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher Packt
ISBN-13 9781783553570
Length 278 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Jorge Palacios Jorge Palacios
Author Profile Icon Jorge Palacios
Jorge Palacios
Jorge Elieser P Garrido Jorge Elieser P Garrido
Author Profile Icon Jorge Elieser P Garrido
Jorge Elieser P Garrido
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Behaviors – Intelligent Movement FREE CHAPTER 2. Navigation 3. Decision Making 4. Coordination and Tactics 5. Agent Awareness 6. Board Games AI 7. Learning Techniques 8. Miscellaneous Index

Predicting a projectile's landing spot

After a projectile is shot, some agents need to make a run for it, if we're talking about a grenade, or look at it when we're developing a sports game. In either case, it's important to predict the projectile's landing spot in order to make decisions:

Getting ready

Before we get into predicting the landing position, it's important to know the time left before it hits the ground (or reaches a certain position). Thus, instead of creating new behaviors, we need to update the Projectile class.

How to do it...

  1. First, we need to add the GetLandingTime function to compute the landing time:
    public float GetLandingTime (float height = 0.0f)
    {
        Vector3 position = transform.position;
        float time = 0.0f;
        float valueInt = (direction.y * direction.y) * (speed * speed);
        valueInt = valueInt - (Physics.gravity.y * 2 * (position.y - height));
        valueInt = Mathf.Sqrt(valueInt);
        float valueAdd = (-direction.y) * speed;
        float valueSub = (-direction.y) * speed;
        valueAdd = (valueAdd + valueInt) / Physics.gravity.y;
        valueSub = (valueSub - valueInt) / Physics.gravity.y;
        if (float.IsNaN(valueAdd) && !float.IsNaN(valueSub))
            return valueSub;
        else if (!float.IsNaN(valueAdd) && float.IsNaN(valueSub))
            return valueAdd;
        else if (float.IsNaN(valueAdd) && float.IsNaN(valueSub))
            return -1.0f;
        time = Mathf.Max(valueAdd, valueSub);
        return time;
    }
  2. Now, we add the GetLandingPos function to predict the landing spot:
    public Vector3 GetLandingPos (float height = 0.0f)
    {
        Vector3 landingPos = Vector3.zero;
        float time = GetLandingTime();
        if (time < 0.0f)
            return landingPos;
        landingPos.y = height;
        landingPos.x = firePos.x + direction.x * speed * time;
        landingPos.z = firePos.z + direction.z * speed * time;
        return landingPos;
    }

How it works...

First, we solve the equation from the previous recipe for a fixed height and, given the projectile's current position and speed, we are able to get the time at which the projectile will reach the given height.

There's more...

Take into account the NaN validation. It's placed that way because there may be two, one, or no solution to the equation. Furthermore, when the landing time is less than zero, it means the projectile won't be able to reach the target height.

You have been reading a chapter from
Unity 5.x Game AI Programming Cookbook
Published in: Mar 2016
Publisher: Packt
ISBN-13: 9781783553570
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime