Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Unsupervised Learning Workshop

You're reading from   The Unsupervised Learning Workshop Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictions

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800200708
Length 550 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimensionality Reduction Techniques and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Introduction

Have you ever been asked to take a look at some data and came up empty handed? Maybe you weren't familiar with the dataset, or maybe you didn't even know where to start. This may have been extremely frustrating, and even embarrassing, depending on who asked you to take care of the task.

You are not alone, and, interestingly enough, there are many times the data itself is simply too confusing to be made sense of. As you try and figure out what all those numbers in your spreadsheet mean, you're most likely mimicking what many unsupervised algorithms do when they try to find meaning in data. The reality is that many unprocessed real-world datasets may not have any useful insights. One example to consider is the fact that these days, individuals generate massive amounts of granular data on a daily basis – whether it's their actions on a website, their purchase history, or what apps they use on their phone. If you were to look at this information on the surface, it would be a big, unorganized mess with no hope of clarity. Don't fret, however; this book will prepare you for such tall tasks so that you'll never be frustrated again when dealing with data exploration tasks, no matter how large.

For this book, we have developed some best-in-class content to help you understand how unsupervised algorithms work and where to use them. We'll cover some of the foundations of finding clusters in your data, how to reduce the size of your data so it's easier to understand, and how each of these sides of unsupervised learning can be applied in the real world. We hope you will come away from this book with a strong real-world understanding of unsupervised learning, the problems that it can solve, and those it cannot.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime