Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Regularization Cookbook

You're reading from   The Regularization Cookbook Explore practical recipes to improve the functionality of your ML models

Arrow left icon
Product type Paperback
Published in Jul 2023
Publisher Packt
ISBN-13 9781837634088
Length 424 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Vincent Vandenbussche Vincent Vandenbussche
Author Profile Icon Vincent Vandenbussche
Vincent Vandenbussche
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Chapter 1: An Overview of Regularization 2. Chapter 2: Machine Learning Refresher FREE CHAPTER 3. Chapter 3: Regularization with Linear Models 4. Chapter 4: Regularization with Tree-Based Models 5. Chapter 5: Regularization with Data 6. Chapter 6: Deep Learning Reminders 7. Chapter 7: Deep Learning Regularization 8. Chapter 8: Regularization with Recurrent Neural Networks 9. Chapter 9: Advanced Regularization in Natural Language Processing 10. Chapter 10: Regularization in Computer Vision 11. Chapter 11: Regularization in Computer Vision – Synthetic Image Generation 12. Index 13. Other Books You May Enjoy

Data augmentation using word2vec

One way to regularize a model and get better performance is to have more data. Collecting data is not always easy or possible, but synthetic data can be an affordable way to improve performance. We’ll do this in this recipe.

Getting ready

Using word2vec embeddings, you can generate new, synthetic data that has a close semantic meaning. By doing this, it is fairly easy for a given word to get the most similar words in a given vocabulary.

In this recipe, using word2vec and a few parameters, we’ll see how we can generate new sentences with a close semantic meaning. We will only apply it to a given sentence as an example and propose how to integrate it into a full training pipeline.

The only required libraries are numpy and gensim, both of which can be installed with pip install numpy gensim.

How to do it…

Here are the steps to complete this recipe:

  1. The first step is to import the necessary libraries –...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image