Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Machine Learning Solutions Architect Handbook

You're reading from   The Machine Learning Solutions Architect Handbook Create machine learning platforms to run solutions in an enterprise setting

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801072168
Length 442 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
David Ping David Ping
Author Profile Icon David Ping
David Ping
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Solving Business Challenges with Machine Learning Solution Architecture
2. Chapter 1: Machine Learning and Machine Learning Solutions Architecture FREE CHAPTER 3. Chapter 2: Business Use Cases for Machine Learning 4. Section 2: The Science, Tools, and Infrastructure Platform for Machine Learning
5. Chapter 3: Machine Learning Algorithms 6. Chapter 4: Data Management for Machine Learning 7. Chapter 5: Open Source Machine Learning Libraries 8. Chapter 6: Kubernetes Container Orchestration Infrastructure Management 9. Section 3: Technical Architecture Design and Regulatory Considerations for Enterprise ML Platforms
10. Chapter 7: Open Source Machine Learning Platforms 11. Chapter 8: Building a Data Science Environment Using AWS ML Services 12. Chapter 9: Building an Enterprise ML Architecture with AWS ML Services 13. Chapter 10: Advanced ML Engineering 14. Chapter 11: ML Governance, Bias, Explainability, and Privacy 15. Chapter 12: Building ML Solutions with AWS AI Services 16. Other Books You May Enjoy

Testing your knowledge

Alright! You have just completed this chapter. Let's see if you have understood and retained the knowledge you have just acquired.

Take a look at the list of the following scenarios and determine which of the three ML types can be applied (supervised, unsupervised, or reinforcement):

  1. There is a list of online feedback on products. Each comment has been labeled with a sentiment class (for example, positive, negative, or neutral). You have been asked to build an ML model to predict the sentiment of new feedback.
  2. You have historical house pricing information and details about the house, such as zip code, number of bedrooms, house size, and house condition. You have been asked to build an ML model to predict the price of a house.
  3. You have been asked to identify potentially fraudulent transactions on your company's e-commerce site. You have data such as historical transaction data, user information, credit history, devices, and network access data. However, you don't know which transactions are fraudulent.

Take a look at the following questions on the ML life cycle and ML solutions architecture to see how you would answer them:

  1. There is a business workflow that processes a request with a set of well-defined decision rules, and there is no tolerance to deviate from the decision rules when making decisions. Should you consider ML to automate the business workflow?
  2. You have deployed an ML model into production. However, you do not see the expected improvement in the business KPIs. What should you do?
  3. There is a manual process that's currently handled by a small number of people. You found an ML solution that can automate this process, however, the cost of building and running the ML solution is higher than the cost saved from automation. Should you proceed with the ML project?
  4. As an ML solutions architect, you have been asked to validate an ML approach for solving a business problem. What steps would you take to validate the approach?
You have been reading a chapter from
The Machine Learning Solutions Architect Handbook
Published in: Jan 2022
Publisher: Packt
ISBN-13: 9781801072168
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image